ответ:
исследовать функцию y=-x^4+8x^2-9 и построить ее график.
решение:
1. область определения функции - вся числовая ось.
2. функция y=-x^4+8x^2-9 непрерывна на всей области определения. точек разрыва нет.
3. четность, нечетность, периодичность:
так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.
4. точки пересечения с осями координат:
ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.
квадратное уравнение, решаем относительно n:
ищем дискриминант:
d=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;
дискриминант больше 0, уравнение имеет 2 корня:
n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;
n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.
обратная замена: х = √n.
x₁ = √1,354249 = 1,163722, x₂ = -1,163722.
x₃ = √6,645751 = 2,57793, x₄ = -2,577935.
получаем 4 точки пересечения с осью ох:
(1,163722; 0), (-1,16372; 0), (2,57793; 0), (-2,57793; 0).
x₃ = √6,645751 = 2,57793,
oy: x = 0 ⇒ y = -9. значит (0; -9) - точка пересечения с осью oy.
5. промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
имеем 3 критические точки: х = 0, х = 2 и х = -2.
определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3
y' = 60 0 -12 0 12 0 -60.
где производная положительна - функция возрастает, где отрицательна - там убывает. точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
минимум функции в точке: x = 0.
максимумы функции в точках:
x = -2.
x = 2.
убывает на промежутках (-2, 0] u [2, +oo).
возрастает на промежутках (-oo, -2] u [0, 2).
6. вычисление второй производной: y''=-12х² + 16 ,
найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
решаем это уравнение
корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. интервалы выпуклости и вогнутости:
найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
выпуклая на промежутках (-oo, -2*sqrt(3)/3] u [2*sqrt(3)/3, oo)
9%
Пошаговое объяснение:
Итак, у нас есть 2 станка, отказывающие с вероятностями p1 и p2 соответственно.
Событие X0 = (0 станков отказали) = (Все станки работают). Его можно записать как произведение событий X0=
¯
A1
⋅
¯
A2
, поэтому вероятность
P(X0)=P(
¯
A1
⋅
¯
A2
)=P(
¯
A1
)⋅P(
¯
A2
)=q1⋅q2.(1)
Событие X1 = (1 станок отказал). Подумаем, когда такое событие произойдет:
1. Когда первый станок откажет (событие A1) и одновременно с этим второй станок работает (событие
¯
A2
), то есть получили произведение событий A1⋅
¯
A2
.
2. Когда второй станок откажет (событие A2) и одновременно с этим первый станок работает (событие
¯
A1
), то есть получили произведение событий
¯
A1
⋅A2.
Так как других вариантов нет, а эти два варианта - несовместные (они не могут произойти одновроменно, или первая ситуация, или вторая), то по теореме сложения вероятностей несовместных событий:
P(X1)=P(A1⋅
¯
A2
+
¯
A1
⋅A2)=P(A1⋅
¯
A2
)+P(
¯
A1
⋅A2)=
дальше уже по известной теореме умножения вероятностей раскрываем скобки:
=P(A1)⋅(
¯
A2
)+P(
¯
A1
)⋅P(A2)=p1⋅q2+q1⋅p2.
Мы получили формулу, позволяющую найти вероятность в точности одного отказавшего станка из двух:
P(X1)=p1⋅q2+q1⋅p2.(2)
Событие X2 = (2 станка отказали). Его можно записать как произведение событий X2=A1⋅A2, поэтому вероятность
P(X2)=P(A1⋅A2)=P(A1)⋅P(A2)=p1⋅p2.(3)
Теория: случай 3 станков
Быстренько обобщим наши формулы для случая 3 станков, отказывающих с вероятностями p1, p2 и p3.
Ни один станок не отказал:
P(X0)=P(
¯
A1
⋅
¯
A2
⋅
¯
A3
)=P(
¯
A1
)⋅P(
¯
A2
)⋅P(
¯
A3
)=q1⋅q2⋅q3.(4)
В точности один станок отказал, остальные два - нет:
P(X1)==P(A1)⋅P(
¯
A2
)⋅P(
¯
A3
)+P(
¯
A1
)⋅P(A2)⋅P(
¯
A3
)+P(
¯
A1
)⋅P(
¯
A2
)⋅P(A3)==p1⋅q2⋅q3+q1⋅p2⋅q3+q1⋅q2⋅p3.(5)
В точности два станка отказали, а один - работает:
P(X2)==P(A1)⋅P(A2)⋅P(
¯
A3
)+P(A1)⋅P(
¯
A2
)⋅P(A3)+P(
¯
A1
)⋅P(A2)⋅P(A3)==p1⋅p2⋅q3+p1⋅q2⋅p3+q1⋅p2⋅p3.(6)
Все три станка отказали:
P(X3)=P(A1⋅A2⋅A3)=P(A1)⋅P(A2)⋅P(A3)=p1⋅p2⋅p3.(7)
Практика: укрощаем станки
Пример 1. Два станка работают независимо друг от друга. Вероятность того, что первый станок проработает смену без наладки, равна 0,9, а второй – 0,8. Найти вероятность того, что: а) оба станка проработают смену без наладки, б) оба станка за смену потребуют наладки.
Итак, случай с 2 станками, используем формулы (1) и (3), чтобы найти искомые вероятности. Важно, какое событие мы считаем базовым: выше в теории мы использовали "станок откажет", тут же удобнее событие "станок проработает смену" (при этом формулы сохраняют вид, но легко использовать не ту, будьте внимательны).
Итак, пусть pi - вероятность i-му станку проработать смену без наладки. И нужные вероятности:
1) Оба станка проработают смену без наладки:
P(A1⋅A2)=P(A1)⋅P(A2)=p1⋅p2=0,9⋅0,8=