6 Read the Vocab boost! box. Then study the dictionary entries below. Complete the pairs of adjectives. 1 awake Opposite: 2 late Opposite: 3 beautiful Opposite: 4 thick Opposite: 5 near Opposite: 6 soft Opposite: awake la'werk/ adjective not sleeping: The children are still awake. > opposite asleep early /'3:li/ adjective before the usual or right time: The train arrived ten minutes early. > opposite late ugly Magli/ adjective not pleasant to look at: The house was really ugly. > opposite beautiful thick Oik/ adjective far from one side to the other: The walls are very thick. > opposite thin far? /fa:(r)/ adjective a long way away: Let's walk - it's not far. > opposite near hard' /hard/ adjective not soft: These apples are very іть
Назовём каждую батарейку отдельной буквой — А Б В Г Д Е Ж З И К Л М Н. Это позволит нам не перепутать батарейки, когда мы будем менять их местами друг с другом.
Теперь разобьём батарейки на пары и проверим в фонарике каждую из них: (А Б) (В Г) (Д Е) (Ж З) (ИК) (ЛМ) (Н)
Если фонарик заработал на какой-то из них — отлично, мы нашли нужную пару.
Если лампочка так и не загорелась, значит, в каждой паре у нас оказалась одна хорошая батарейка, и одна плохая.
Теперь возьмём любые две пары — например, (А Б) и (В Г) — и поменяем в них первые батарейки местами.
(В Б) и (А Г) — в этот момент мы проверили уже шесть пар.
Получим: Если фонарик не заработал и после этой перестановки, значит, мы поменяли местами одинаковые батарейки: хорошую заменили на хорошую, или плохую — на плохую. Выходит, нужно взять вторую батарейку из первой пары и поменять её с первой батарейкой из второй пары: берём пару (В Б), достаём оттуда вторую батарейку Б и ставим её на первое место в паре (А Г), получаем: (Б Г) — это седьмая пара.
Если фонарик загорелся, значит, второй мы поставили хорошую батарейку. Если фонарик всё ещё не светит, получается, в этой паре у нас две плохих батарейки, а две хороших остались в другой — (В А). Ставим их в фонарик, и готово!
Получается, что нам понадобится проверить минимум 6 пар.
Построение ясно из чертежа. АВ=СД=17см. Из равенства боковых сторон следует, что ∠ABE=∠CFD=90°. AD=44 см, АС=39 см. Проведем в трапеции высоты BE и CF, обозначив из длину через h. Эти высоты отсекут от основания AD отрезки AE и DF, длину которых мы обозначим через x. Рассматриваем два прямоугольных треугольника: ΔABE и ΔACF. Для каждого из них запишем теорему Пифагора. AB² = h² + x² → h² = AB² - x²; AC² = h² + (AD - x)² → h² = AC² - (AD - x)² Поскольку левые этих уравнений части равны, то равны и их правые части. AB² - x² = AC² - (AD - x)² 17² - x² = 33² - (44 - x)² Раскрывая скобки и приводя подобные члены получаем уравнение 88·х = 704 → х = 8 (см) Теперь находим BC = AD - 2·x = 44 - 2·8 = 28 (см) Осталось найти высоту h. Найдем ее из уравнения h² = AB² - x²; h² = 17² - 8² = 289 - 64 = 225; h=√225 = 15 (см)
минимум 6 пар.
Пошаговое объяснение:
Назовём каждую батарейку отдельной буквой — А Б В Г Д Е Ж З И К Л М Н. Это позволит нам не перепутать батарейки, когда мы будем менять их местами друг с другом.
Теперь разобьём батарейки на пары и проверим в фонарике каждую из них: (А Б) (В Г) (Д Е) (Ж З) (ИК) (ЛМ) (Н)
Если фонарик заработал на какой-то из них — отлично, мы нашли нужную пару.
Если лампочка так и не загорелась, значит, в каждой паре у нас оказалась одна хорошая батарейка, и одна плохая.
Теперь возьмём любые две пары — например, (А Б) и (В Г) — и поменяем в них первые батарейки местами.
(В Б) и (А Г) — в этот момент мы проверили уже шесть пар.
Получим: Если фонарик не заработал и после этой перестановки, значит, мы поменяли местами одинаковые батарейки: хорошую заменили на хорошую, или плохую — на плохую. Выходит, нужно взять вторую батарейку из первой пары и поменять её с первой батарейкой из второй пары: берём пару (В Б), достаём оттуда вторую батарейку Б и ставим её на первое место в паре (А Г), получаем: (Б Г) — это седьмая пара.
Если фонарик загорелся, значит, второй мы поставили хорошую батарейку. Если фонарик всё ещё не светит, получается, в этой паре у нас две плохих батарейки, а две хороших остались в другой — (В А). Ставим их в фонарик, и готово!
Получается, что нам понадобится проверить минимум 6 пар.