М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BobrovskayaVera1
BobrovskayaVera1
17.06.2020 11:04 •  Математика

3. Сумма цифр двузначного числа равна 15. Если поменять его цифры местами, то получим число, которое меньше данного на 9. Найдите данное число использую шаги из дескриптора


3. Сумма цифр двузначного числа равна 15. Если поменять его цифры местами, то получим число, которое

👇
Открыть все ответы
Ответ:

       

а).

Пусть требуемое в задаче возможно и в ящике есть x ("маленьких") фруктов меньше 100 грамм. Тогда ("больших") фруктов, чья масса больше

С одной стороны, масса всех фруктов равна 85 \cdot x + 100 \cdot (76 - 2x) + 124 \cdot x, а с другой стороны - 100 \cdot 76. Но так как мы говорим об одной и той же группе фруктов, то:

85 \cdot x + 100 \cdot (76 - 2x) + 124 \cdot x = 100 \cdot 76 \\9x + 100 \cdot 76 = 100 \cdot 76\\9x = 0\\x=0

Но в задаче сказано, что "есть как минимум 2 различных по массе фрукта". Но полученный в этом случае результат противоречит условию Из этого заключаем, что описанная ситуация невозможна.

ответ: нет, не может.

б).

Пусть есть x "маленьких" фруктов и y "больших" (в этом случае "средних" фруктов будет 76-x-y). Точно также, как и в пункте, составим уравнение:

85x + 100 \cdot (76 - x- y) + 124y = 76 \cdot 100\\85x + 124y - 100x - 100y = 0\\24y - 15x = 0\\5x=8y

Мы получили очень интересный результат: в любом случае отношение количества "маленьких" и "больших" фруктов будет равно 8 : 5.

Значит, так как x и y обязательно должны быть натуральными, общее число "маленьких" и "больших" фруктов должно делиться на 13. Такое общее число будет обязательно меньше или равно 13 \cdot 5 = 65.

Получается, что количество "средних" фруктов больше или равно 76 - 65 = 11. В ящике их 8 уж никак не может быть.

ответ: нет, не может.

в).

Так как в задаче сказано "найдите наибольшую возможную массу фрукта", то наверняка нужно считать массы фруктов целыми числами.

Если есть y "больших" фруктов и m - масса наибольшего,то, чтобы "понизить" значение среднего арифметического (и привести его в итоге к числу 124), нужно массу остальных "больших" фруктов сделать как можно меньше - в районе 101 грамма.

Поэтому:

124y = m + 101 \cdot (y-1)\\23y + 101 = m

Как было фактически выяснено в пункте задачи, максимальное значение y равно 65 : 13 \cdot 5 = 25m максимальное при максимальном значении y).

Делаем вывод, что в этом случае:

m = 23y+101 = 676.

Теперь проверим, что этот случай нам действительно подходит:

Есть 25 "больших" фруктов: масса 24 из них равна 101, а масса 1 составляет 676 граммов.Есть 40 "маленьких" фруктов: масса каждого - по 85 граммов.И еще 11 "средних" фруктов, ровно по 100 граммов.

Средняя масса "больших": \dfrac{24 \cdot 101 + 1 \cdot 676}{25} = 124.

Средняя масса "средних": \dfrac{11 \cdot 100}{11} = 100.

Средняя масса "маленьких": \dfrac{40 \cdot 85}{40} = 85.

Общая средняя масса: \dfrac{24 \cdot 101 + 1 \cdot 676 + 11 \cdot 100 + 40 \cdot 85}{76} = 100.

Все сходится!

ответ: 676 граммов.      

4,6(100 оценок)
Ответ:
dashaR06032006
dashaR06032006
17.06.2020

Пусть x овощей имеют массу меньше 1000, y - больше 1000, а z - ровно 1000.

а) Предположим, что да. Тогда справедливо уравнение:

982x+1024x+1000(65-x-x)=65\times 1000=65000 \Leftrightarrow x=0, но x очевидно не может быть нулем, т.к. среднее арифметическое больше нуля. Противоречие.

б) Предположим, что это возможно. Тогда x+y+13=65 ⇔ x+y=52. Аналогично строим уравнение: 982x+1024(52-x)+13000=65000 \Leftrightarrow x=\frac{208}{7}, получили противоречие: x должно быть целым числом.

в) Понятно, что минимальная масса встречается только в группе, где расположены овощи массой меньше 1000 г. Обозначим массу самого легкого за  \sf m; Пусть масса оставшихся в этой же группе овощей суммарно равна \sf S; Тогда \sf m+S=982x; Заметим, что \sf S\leq 999(x-1); Поэтому \sf 982x-m\leq 999x-999 \Leftrightarrow m\geq 999-17x(*);

Теперь рассмотрим уравнение \sf 982x+1024y+1000(65-x-y)=65000 \Leftrightarrow y=\frac{3x}{4}, значит x кратно 4. Пусть \sf x=4n,\; n\in \mathbb{N};

Рассмотрим другое уравнение: \sf 4n\times 982+1000z+1024(65-4n-z)=65000; Отсюда получаем, что \sf n=\frac{65-z}{7} \Rightarrow z=2,\;9... \Rightarrow n\leq 9 \Rightarrow x\leq 36;

Возвратимся к (*): \sf m\geq 999-17x \geq 999-17\times 36=387; Приведем пример при котором осуществима оценка:

Пусть в первой группе 1 овощ весит 387 граммов, а остальные 35 весят по 999 граммов. Во второй группе 2 овоща весят по 1000 граммов. А в последней группе 27 овощей весят 1024 грамма.

ответ: а) нет

           б) нет

           в) минимально возможная масса - 387 граммов

4,4(96 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ