Дано: F(x)=- x²+4, y(x)=0
Найти: S=? - площадь фигуры
Пошаговое объяснение:
1) Находим точки пересечения графиков.
x²-4 = 0 - квадратное уравнение
a = -2- верхний предел, b = 2- нижний предел.
2) Площадь - интеграл разности функций.
f(x) = -4 + x² - подинтегральная функция
3) Интегрируем функцию и получаем:
F(x) = -4*x + 1/3*x³
4) Вычисляем на границах интегрирования.
S(а) = S(-2) = 8 -2,67 = 5,33
S(b) = S(2) = -8 +2,67 = -5,33
S = S(2)- S(-2) = 10,66 - площадь
Рисунок к задаче в приложении.
б)
Дано: F(x)= - x² +4, y(x)= 3
Найти: S=? - площадь фигуры
Пошаговое объяснение:
1) Находим точки пересечения графиков.
x² - 1=0 - квадратное уравнение
a = -1- верхний предел, b = 1- нижний предел.
2) Площадь - интеграл разности функций.
f(x) = -1 + x² - подинтегральная функция
3) Интегрируем функцию и получаем:
F(x) = -x+ 1/3*x³
4) Вычисляем на границах интегрирования.
S(а) = S(-1) = 1 - 0,33 = 0,67
S(b) = S(1) =-1 +0,33 = -0,67
S = S(1)- S(-1) = 1,34 - площадь
Рисунок к задаче в приложении.
2а • х = (а - 2)/(а - 2)
2а • х = 1
х = 1 : 2а
х = 1/(2а)
ax - 1 > 3
ах > 3 + 1
ах > 4
х > 4/а
(a - 2) • x > a² - 4
(а - 2) • х > (а + 2)(а - 2)
х > (а + 2)(а - 2)/(а - 2), а ≠ 2
х > а + 2
ax² - 4x - 4 > 0
D = 4² - 4•(-4)•a = 4² + 16a = 16 + 16a = 16(1 + a)
√D = √((16(1 + a)) = 4√(1 + a)
х1 = (4 + 4√(1 + a)) / 2а =
= 4(1 + √(1 + a))/2а = 2(1 + √(1 + a))/а
х2 = (4 - 4√(1 + a)) / 2а =
= 4(1 - √(1 + a))/2а = 2(1 - √(1 + a))/а
1 + a ≥ 0
a ≥ -1
а ≠ 0
(х - 2(1 - √(1 + a))/а) • (х - 2(1 + √(1 + a))/а) > 0
1) х - 2(1 - √(1 + a))/а > 0
х - 2(1 + √(1 + a))/а > 0
х > 2(1 - √(1 + a))/а
х > 2(1 + √(1 + a))/а
1) х - 2(1 - √(1 + a))/а < 0
х - 2(1 + √(1 + a))/а < 0
х < 2(1 - √(1 + a))/а
х < 2(1 + √(1 + a))/а
Но при a ≥ -1; а ≠ 0