М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
12абра
12абра
28.01.2021 11:37 •  Математика

В первый день оля прочитала Книг 1/6
, а во второй 0,4 оставшегося ко-
личества. Во сколько раз часть книги,
прочитанная в первый день, меньше
части, прочитанной во второй

👇
Ответ:
lenayun
lenayun
28.01.2021

Відповідь:0.4

Покрокове пояснення:

1/6/0.4=0.4

4,5(97 оценок)
Открыть все ответы
Ответ:
ник5040
ник5040
28.01.2021
Эти уравнения решаются с заменой.
1. 6sin²x-7sinx - 5=0
Заменим sinx = t.
Получаем квадратное уравнение:
6t² - 7t - 5 = 0.
Квадратное уравнение, решаем относительно t: 
Ищем дискриминант:D=(-7)^2-4*6*(-5)=49-4*6*(-5)=49-24*(-5)=49-(-24*5)=49-(-120)=49+120=169;
Дискриминант больше 0, уравнение имеет 2 корня:t_1=(√169-(-7))/(2*6)=(13-(-7))/(2*6)=(13+7)/(2*6)=20/(2*6)=20/12 = 5/3 ≈ 1,6667; этот корень отбрасываем (синус не может быть больше 1).t_2=(-√169-(-7))/(2*6)=(-13-(-7))/(2*6)=(-13+7)/(2*6)=-6/(2*6)=-6/12=-0,5. Производим обратную замену:
sin(x) = -0,5.
x = (-π/3) + 2πk, k ∈ Z.
x = (-5π/6) + 2πk, k ∈ Z.

2. 3sin²x+10cosx-10=0.
sin²x = 1 - cos²x.
Подставим в исходное уравнение:
3(1 - cos²x) + 10cosx - 10 = 0.
-3cos²x + 10cosx - 7 = 0.
Замена: cosx = t и перемена знаков.
3t² -10t + 7 = 0.
Квадратное уравнение, решаем относительно t: 
Ищем дискриминант:D=(-10)^2-4*3*7=100-4*3*7=100-12*7=100-84=16;
Дискриминант больше 0, уравнение имеет 2 корня:t_1=(√16-(-10))/(2*3)=(4-(-10))/(2*3)=(4+10)/(2*3)=14/(2*3)=14/6=7/3 ≈ 2.3333; отбрасываемt_2=(-√16-(-10))/(2*3)=(-4-(-10))/(2*3)=(-4+10)/(2*3)=6/(2*3)=6/6=1.Производим обратную замену:
cos(x) = 1.
x = 2πk, k ∈ Z.

3.2sin²x+11sin x cos x + 14cos²x = 0.
Разложим на множители:
(2cosx + sinx)*(7cosx + 2sinx) = 0.
Приравниваем каждый из множителей нулю:
2cosx + sinx = 0. 
Поделим обе части уравнения на cosx:
2 + tgx = 0.
tgx = -2.
x = Arc tg(-2) = arc tg(-2) + πk, k ∈ Z.
7cosx + 2sinx = 0.
7 + 2tgx = 0.
tgx = -7/2.
x = Arc tg(-7/2) = arc tg(-7/2) + πk, k ∈ Z.
ответ:
x = arc tg(-2) + πk, k ∈ Z.
x =  arc tg(-7/2) + πk, k ∈ Z.

Можно дать цифровые значения аrc tg(-2) и arc tg(-7/2):
аrc tg(-2) =  -1,10715 ,
arc tg(-7/2) = -1,2925  (это в радианах).

Можно избавиться от отрицательных углов по формуле
tg(-x) = -tg(x):
Тогда ответ будет:
x = πk - arc tg(2), k ∈ Z.
x =  πk - arc tg(7/2), k ∈ Z.
4,5(84 оценок)
Ответ:
BigAwto
BigAwto
28.01.2021
Можно sin(3x) разложить:
sin(3x)  = 3sin(x) - 4sin³(x) .
Подставим в исходное уравнение:
sin(x) + 3sin(x) - 4sin³(x) = sin(2x),
4sin(x) - 4sin³(x) - 2sin(x)*cos(x) = 0,
4sin(x)(1 - sin²(x)) - 2sin(x)*cos(x) = 0.  
Сократим на 2 и заменим (1 - sin²(x)) = cos²(x).
2sin(x)*cos²(x) - sin(x)*cos(x) = 0.  
Вынесем за скобки sin(x)*cos(x),
sin(x)*cos(x)*(2cos(x) - 1) = 0.  
Отсюда получаем решение:
sin(x) = 0.  
х = πk, k ∈ Z,
cos(x) = 0,
x = (π/2) + πk, k ∈ Z,
cos(x) = 1/2,
x = (-π/3) + 2πk, k ∈ Z,
cos(x) = 1/2,
x = (π/3) + 2πk, k ∈ Z.

ответ:
х = πk, k ∈ Z,
x = (π/2) + πk, k ∈ Z,
x = (-π/3) + 2πk, k ∈ Z,
x = (π/3) + 2πk, k ∈ Z.
4,7(53 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ