М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
keklol1990
keklol1990
27.04.2020 04:16 •  Математика

...4.Подумайте, к какому выводу пришёл герой рассказа. 5. Объясните пословицу: "красив тот, кто красиво поступает". Как связана эта пословица с содержанием отрывка из повести? рассказ: звоните и приезжайте (третья часть) если, что...​

👇
Открыть все ответы
Ответ:
sonicbum
sonicbum
27.04.2020

Найдем интеграл от f(x)

Получаем:

F(x)=\int{f(x)}\, dx \\ F(x)=\int{(cos(x)-sin(x)})\,dx=\int{cos(x)}\,dx - \int {sin(x)}\,dx= \\ =sin(x)+cos(x)+C, \\C=const

Надо найти C.

Известно что F(\frac{3\pi}{2})=-2

Подставим в найденное F(x), получим:

sin(\frac{3\pi}{2})+cos(\frac{3\pi}{2})+C=-2 \\ -1+0+C=-2 \\ C=-2+1 \\ C=-1

 Получили, что F(x)=sin(x)+cos(x)-1 

Дальше надо решить уравнение:

sin(x)+cos(x)-1=0 \\ sin(x)=\sqrt{1-cos^2(x)} \\ \sqrt{1-cos^2(x)}=1-cos(x) \\ 1-cos^2(x)=1-2cos(x)+cos^2(x)\\ 2cos^2(x)-2cos(x)=0\\ 2cos(x)(cos(x)-1)=0\\ 1) \ cos(x)=0 \\ x_1=\frac{\pi}{2}+2\pi k, k \in Z\\ 2)\ cos(x)-1=0\\ cos(x)=1\\ x_2=2\pi n, n \in Z

Итак получили 2 решения, теперь обратим внимание на условие: f: [\pi;2\pi] \to R, что под ним подразумевалось изначально, я не уверен, может быть этим условием хотели сказать что нас интересуют только действительные корни уравнения и мы не рассматриваем пространство комплексных корней, но скорее всего здесь это было сделано для того чтобы ограничить область в которой лежат нули первообразной, областью следующего вида: x \in [\pi; 2\pi]. Будем полагать что это так, тогда нули первообразной x_1=\frac{\pi}{2}+2\pi k \\ x_2=2\pi n , \\k,n \in Z лежат на данном отрезке при n=1, и первый корень вообще не будет лежать на отрезке при любых значениях k

таким образом получается, что:

x=2\pi единственный ноль первообразной.

Подводя итог получаем

Нулями производной будут: x_1=\frac{\pi}{2}+2\pi k, k \in Z \\ x_2=2\pi n, n \in Z  

Однако условию  f: [\pi;2\pi] \to R удовлетворяет только  x=2\pi

ответ: x=2\pi  

 

 

4,6(82 оценок)
Ответ:
лол04
лол04
27.04.2020

Дано уравнение x² + (2a - 3)x + 3a² - 2a = 0.

Чтобы квадратное уравнение имело 2 корня, надо, чтобы его дискриминант был больше 0.

Находим дискриминант:

D =  (2a - 3)² - 4*1*(3a² - 2a) = 4a² - 12a + 9 - 12a² + 8a = -8a² - 4a + 9.

Приравниваем нулю: -8a² - 4a + 9 = 0.   D = 16 + 288 = 304.  √304 = 4√19.    a1 = (4 - 4√19)/(-16) = (1 - √19)/(-4) ≈ 0,84.

a2 = (4 + 4√19)/(-16) = (1 + √19)/(-4) ≈ -1,34.  

Для квадратного уравнения с отрицательным коэффициентом при х² положительные корни а находятся между -1,34 и 0,84.

Далее, отрицательные корни заданного уравнения могут быть при положительном значении коэффициента при х (то есть ось параболы должна быть сдвинута влево): 2а - 3 > 0,  a > 3/2.

Это противоречит первому условию.

ответ: задача не имеет решения.

4,4(92 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ