3) При возведении обеих частей уравнения в одинаковую четную степень не всегда получаются равносильные уравнения.
Пошаговое объяснение:
1) Утверждение не верно.
Иррациональными называются уравнения, в которых переменная содержится под знаком корня. Например:
Это уравнение имеет корень х = -5!
2) Утверждение не верно.
Например, если возвести в нулевой степень (0 принадлежит множеству действительных чисел) уравнение, имеющий только корень х=0:
то получим
1 ≡ 1, что означает, последнее верно для любого х∈R.
3) Утверждение верно.
Уравнения называются равносильными, если имеют одно и то же множество корней.
В самом деле, рассмотрим иррациональное уравнение, которое не имеет корней:
После возведения в квадрат получим:
x+5=25
А это уравнение имеет корень x=20!
3) При возведении обеих частей уравнения в одинаковую четную степень не всегда получаются равносильные уравнения.
Пошаговое объяснение:
1) Утверждение не верно.
Иррациональными называются уравнения, в которых переменная содержится под знаком корня. Например:
Это уравнение имеет корень х = -5!
2) Утверждение не верно.
Например, если возвести в нулевой степень (0 принадлежит множеству действительных чисел) уравнение, имеющий только корень х=0:
то получим
1 ≡ 1, что означает, последнее верно для любого х∈R.
3) Утверждение верно.
Уравнения называются равносильными, если имеют одно и то же множество корней.
В самом деле, рассмотрим иррациональное уравнение, которое не имеет корней:
После возведения в квадрат получим:
x+5=25
А это уравнение имеет корень x=20!
х=1500-200
х=1300
у+3000+400=7000
у+3400=7000
у=7000-3400
у=3600
600+(z-300)=1000
z-300=1000-600
z-300=400
z=400+300
z=700
560+440+u=2000
1000+u=2000
u=2000-1000
u=1000
v-450=800
v=800+450
v=1250
w-(230+470)=180
w-700=180
w=180+700
w=880
500+k=2200
k=2200-500
k=1700
6000-300-m=200
5700-m=200
m=5700-200
m=5500
800-(4000-t)=150
4000-t=800-150
4000-t=650
t=4000-650
t=3350