1. Прямая и окружность имеют две общие точки, если расстояние от центра окружности до прямой меньше радиуса окружности.
2. Если прямая АВ - касательная к окружности с центром О и В - точка касания, то прямая АВ и радиус ОВ перпендикулярны.
3. Угол АОВ является центральным, если точка О является центром окружности, а лучи ОА и ОВ пересекают окружность. (отрезки ОА и ОВ будут являться радиусами окружности)
4. Вписанный угол, опирающийся на диаметр, равен 90°.
5. Дано: ∠АСD=31°.
∠ABD = 31° (т.к. он вписанный и опирается на ту же дугу, что и ∠АСD), ∠AOD = 62° (∠AOD центральный и опирается на ту же дугу, что и ∠АСD
. Следовательно он в два раза больше ∠AСD).
6.Если хорды АВ и CD окружности пересекаются в точке Е, то верно равенство
DЕ·ЕС = АЕ·ЕВ.
7.Если АВ- касательная, AD - секущая, то выполняется равенство
АВ² = АD·АС.
8. Если четырехугольник ABCD вписан в окружность, то сумма его противоположных углов равна 180°.
9. Центр окружности, вписанной в треугольник, совпадает с точкой пересечения биссектрис этого треугольника.
10. Если точка А равноудалена от сторон данного угла, то она лежит на биссектрисе этого угла.
11. Если точка В лежит на серединном перпендикуляре, проведенному к данному отрезку, то она равноудалена от концов этого отрезка.
12. Около любого треугольника можно описать окружность.
Разделим все шарики на две группы, в каждой по 1010 шариков.
На одну вашу весов положим первую группу, на вторую чашу – вторую группу.
Одна из чаш опустится, другая поднимится, поскольку в одной из групп есть шарик, отличающийся по весу.
Теперь, не смешивая эти группы, освободи весы. Разделим ту группу шариков, которая оказалась легче ещё на две группы по 505 шариков.
Положим на ваши весов группы по 505 шариков. Если весы остались в равновесии, то шарик, отличающийся по весу, в другой группе. А как мы заметили, другая группа оказалось тяжелее, а так как все шарики кроме одного, отличаются по весу, в тяжелой группе и будет этот особенный шарик, и он будет тяжелее остальных. Но если весы с группами по 505 шариков не в равновесии, то значит, особенный шарик в одной из этих групп, и он легче остальных, поэтому из-за него лёгкая группа из 1010 шариков легче второй.
ответ: за 2 взвешивания.
Пошаговое объяснение:
Я думаю так (нас так в школе учили )