М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alisa1999WWW
Alisa1999WWW
14.01.2021 20:45 •  Математика

- 05
| Найдите область допустимых значений переменной в алгебраической дроби
6 - 3​

👇
Открыть все ответы
Ответ:
aruzhan7klass
aruzhan7klass
14.01.2021
Разложим левую часть на множители.
(|x-7| - |x-a|)^2 - 13a( |x-7| - |x-a| ) + 30a^2+ 21a - 9 = 0 \\ D=169a^2-4(30a^2+21a-9)=49a^2-84a+36=(7a-6)^2 \\ (|x-7|-|x-a|-10a+3)(|x-7|-|x-a|-3a-3)=0
Уравнения |x-7|-|x-a|=10a-3 и |x-7|-|x-a|=3a+3 либо имеют одно решение, либо имеют бесконечно много решений, либо вообще решений не имеют. Нас устраивает случай когда каждое из этих уравнений имеет одно решение. Легко понять, что для существования этого единственного решения модули должны раскрываться с разными знаками.
Пусть a>7, тогда, раз модули модули должны раскрыться с разными знаками, x∈[7; a). Разбираемся с первым уравнением, модули раскроются так:
x-7-a+x=10a-3
2x=11a+4
x=(11a+4)/2. Этот x должен принадлежать рассматриваемому промежутку, получаем систему:
{a>7
{7≤(11a+4)/2<a
Решений нет, а значит сразу переходим к случаю a<7 (a=7 можно пропустить, так как такой а, очевидно, нам не подходит)
Нужный промежуток: x∈[a; 7)
Раскрываем модули, преобразовываем и получаем 
x=(10-9a)/2
Решаем систему:
{a<7
{a≤(10-9a)/2<7
Получаем: -4/9<a≤10/11
Переходим ко второму уравнению, раскрываем модули на том же промежутке для a<7 и получаем x=2-2a. Решаем систему:
{a<7
{a≤2-2a<7
Получаем -5/2<a≤2/3. Пересекаем решения и получаем:
-4/9<a≤2/3
Проверь все сам, я мог где то и ошибиться.
4,8(40 оценок)
Ответ:
ОДЗ:
{x>a
{x>-a
Проведем замену log_7 \frac{x+a}{x-a} =t и получим уравнение
t²-8at+12a²+8a-4=0
D=(4a-4)². Случай когда D=0 (a=1) нам не подходит, отметим это, во всех остальных случаях
t1=6a-2
t2=2a+2
Теперь вернемся к замене
log_7 \frac{x+a}{x-a} =6a+2
log_7 \frac{x+a}{x-a} =6a+2
Найдем x из первого уравнения:
\frac{x+a}{x-a} =7^{6a-2}=b \\ &#10;x+a=7^{6a-2}x-7^{6a-2}a \\ &#10;x(1-7^{6a-2})=-a(1+7^{6a-2}) \\ &#10;x_1= \frac{-a(1+7^{6a-2})}{1-7^{6a-2}} = \frac{a(7^{6a-2}+1)}{7^{6a-2}-1} &#10;&#10;
Проделав такую же штуку со вторым уравнением получим
x_2=\frac{a(7^{2a+2}+1)}{7^{2a+2}-1}
Нам нужно чтобы оба корня были решениями, то есть чтобы они принадлежали ОДЗ.
Если а<0, то система которую я записал в самом начале равносильна неравенству x>-a
Нам нужно чтобы оба корня принадлежали одз одновременно
Решаем систему:
{a<0
{x₁>-a
{x₂>-a
В этом случае получаем a<-1.
Пусть теперь а>0, тогда система будет такая
{a>0
{x₁>a
{x₂>a
Получаем а>1/3. Вспоминаем что a≠1 и объединяем решения.
ответ: a∈(-oo; -1)∪(1/3; 1)∪(1;+oo)
4,6(9 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ