ЗАДАНИЕ ОТ УЧИТЕЛЯ Запиши решение и ответ к задачам. № 1.От двух станций, расстояние между которыми 585 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 5 часа? № 2.Через сколько секунд встретятся две ласточки, летящие на встречу друг другу, если скорость каждой из них 42 метра в секунду, а расстояние между ними 840 м. ЗАДАНИЕ ОТ УЧИТЕЛЯ Запиши решение и ответ к задачам. № 1.От двух станций, расстояние между которыми 585 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 5 часа? № 2.Через сколько секунд встретятся две ласточки, летящие на встречу друг другу, если скорость каждой из них 42 метра в секунду, а расстояние между ними 840 м. ЗАДАНИЕ ОТ УЧИТЕЛЯ
Запиши решение и ответ к задачам.
№ 1.От двух станций, расстояние между которыми 585 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 5 часа?
№ 2.Через сколько секунд встретятся две ласточки, летящие на встречу друг другу, если скорость каждой из них 42 метра в секунду, а расстояние между ними 840 м.
13 дробей, дающих целые числа: 30/1, 4/2, 16/8, 15/3, 18/6, 21/7, 24/12, 25/5, 27/9, 28/14, 20/10, 22/11, 26/13. Остается две дроби, которые не сокращаются, например 29/23, 19/17. Сделать больше целых чисел не получится, т.к. числа 17,19,23,29 - простые и до 30 ничего на них не поделится. А сами они делиться могут только на 1. Если даже будет дробь типа 29/1, то все равно останутся 3 простых числа, которые, будучи распределенными по числителям и знаменятелям дадут как минимум две несократимые дроби. Поэтому минимальное количество несократимых дробей равно 2. Так что ответ: 13.
13 дробей, дающих целые числа: 30/1, 4/2, 16/8, 15/3, 18/6, 21/7, 24/12, 25/5, 27/9, 28/14, 20/10, 22/11, 26/13. Остается две дроби, которые не сокращаются, например 29/23, 19/17. Сделать больше целых чисел не получится, т.к. числа 17,19,23,29 - простые и на интервале до 30 ничего на них не поделится. А сами они делиться могут разве что на 1. Но если даже будет дробь типа 29/1, то все равно останутся 3 простых числа, которые, будучи распределенными по числителям и знаменятелям дадут как минимум две нескоратимые дроби. Поэтому минимальное количество нескоратимых дробей равно 2. Так что ответ: 13.
Пошаговое объяснение
Задача-1
V=585÷5-63=54 (км/ч)
ответ: V=54 км/ч
Задача-2
t=840÷42=20 (с)
ответ: t=20 с.