Пусть х - одна сторона прямоугольника, тогда другая сторона будет равна х-14. Диагональ прямоугольника делит его на два равных прямоугольных треугольника, тогда диагональ будет их общей гипотенузой, а стороны прямоугольника - их катетами. По т. Пифагора 26²=х²+(х-14)² ⇔ ⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения). Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.
1) p1=0,6; p2=0,7. Вероятность промаха обоих (1-p1)*(1-p2). Вероятность попадания хотя бы одного 1-(1-p1)(1-p2)=1-0,4*0,3=0,88 2) найдем вероятность того что все 10 деталей годные. Благоприятных исходов "цэ из 90 по 10" - число сочетаний (буду писать С_90_10). Всего исходов С_100_10. Тогда искомая вероятность С_90_10/С_100_10. Вероятность что есть дефектная из 10: 1-С_90_10/С_100_10=1-(81*82*...*90)/(91*92*...*100) 3) p1=0,6; p2=0,7. Два варианта: 1 попал 2 мимо или наоборот. Получим p1*(1-p2)+p2(1-p1)=0,6*0,3+0,4*0,7=0,46
⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения).
Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.