М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

 В прямоугольном треугольнике угол А равен 30°, гипотенуза АВ = 34 см, а высота,   опущенная на гипотенузу, равна 15 см. Вычисли периметр треугольника. С решением ​

👇
Ответ:
nenftd
nenftd
21.05.2021
Добрый день!

Для решения этой задачи мы будем использовать знания о прямоугольных треугольниках и формулу для вычисления периметра.

1. Нам дан прямоугольный треугольник ABC, где угол A равен 30°, гипотенуза АВ равна 34 см, а высота, опущенная на гипотенузу, равна 15 см. По определению прямоугольного треугольника, угол А находится напротив гипотенузы АВ.

A
/|
/ |
15/ | B
/ |
/____|

2. Мы знаем, что в прямоугольном треугольнике сумма всех углов равна 180°. Так как угол А равен 30°, то углы B и C в сумме должны составлять 180° - 30° = 150°.

3. Мы также знаем, что высота, опущенная на гипотенузу, делит треугольник на два меньших прямоугольных треугольника. Поэтому можем разделить треугольник ABC на два меньших треугольника, значит, угол В и угол С в сумме составляют 90°.

4. Теперь мы можем найти оставшиеся стороны треугольника, используя тригонометрические соотношения. Обозначим катет треугольника AC через х.

A
/|
/ |
/ |
/ |
/ |
/_____|
C х B
15

Так как тангенс угла В равен отношению противолежащего катета (15 см) к прилежащему катету (х см), мы можем записать:
тан(В) = 15 / х

Известно, что тан(В) = 1 / tg(В), поэтому мы можем записать:
1 / tg(В) = 15 / х

5. Теперь мы можем найти значение оставшегося катета, используя найденную формулу. Рассмотрим треугольник АВС:

A
/|
/ |
/ |
/ |
34 / |
/____|
C х B
15

Так как sec(С) = AB / AC (секанс С равен отношению гипотенузы AB к прилежащему катету AC), тогда sec(С) = 34 / х. Секанс С также равен 1 / cos(С), поэтому мы можем записать:
1 / cos(С) = 34 / х

6. Теперь у нас есть два уравнения с двумя неизвестными (tg(В) = 15 / х и 1 / cos(С) = 34 / х), и мы можем решить их, чтобы найти значения углов В и С и значение катета х.

Вычисления:

tg(В) = 15 / х (1)
1 / cos(С) = 34 / х (2)

Перенесем х на другую сторону (чтобы избавиться от деления):
tg(В) * х = 15 (3)
1 / cos(С) * х = 34 (4)

Теперь мы можем выразить х:
х = 15 / tg(В) (5)
х = 34 * cos(С) (6)

Подставим выражение для х из уравнения (5) в уравнение (6):
15 / tg(В) = 34 * cos(С)

Разделим оба уравнения на 34:
(15 / 34) / tg(В) = cos(С)

Выразим cos(С) через tg(В):
cos(С) = (15 / 34) / tg(В)

Мы знаем, что sin²(С) + cos²(С) = 1. Подставим выражение для cos(С):
sin²(С) + [(15 / 34) / tg(В)]² = 1

Выразим sin²(С):
sin²(С) = 1 - [(15 / 34) / tg(В)]²

Заметим, что sin(С) = √(sin²(С)). Подставим выражение для sin²(С):
sin(С) = √[1 - [(15 / 34) / tg(В)]²]

Теперь мы можем найти значения sin(С) и cos(С) и подставить их в уравнение для нахождения х.

7. После нахождения значений sin(С) и cos(С) мы можем использовать формулу для нахождения периметра треугольника. Периметр P вычисляется по следующей формуле:

P = AB + AC + BC

Где AB, AC и BC - длины сторон треугольника.

Теперь подставим известные значения:

AB = 34 см (гипотенуза)
AC = х см
BC = 15 см (высота)

Теперь заменим значение х на полученное ранее:

AC = 15 / tg(В)

Теперь можем выразить периметр треугольника:
P = AB + AC + BC
P = 34 + (15 / tg(В)) + 15

Таким образом, периметр треугольника равен 34 + (15 / tg(В)) + 15 см.

Для получения окончательного ответа нужно знать значение tg(В).
4,7(51 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ