Пошаговое объяснение:
Всего в урне 4 + 3 + 2 = 9 шаров.
Синих - 4 шара.
Вероятность вытащить 1 синий шар: 4/9.
Вероятность вытащить после этого ещё 1 синий шар (4-1) /( 9 - 1) = 3/8.
Поскольку события з�висимые, то вероятность того, что оба шара будут СИНИМИ
Р(2син) = 4/9 · 3/8 = 1/6
Аналогично для красных шаров:
Р(2кр) = 3/9 · 2/8 = 1/12
И для зелёных шаров:
Р(2зел) = 2/9 · 1/8 = 1/36
Поскольку события выпадения 2 синих, 2красных и 2 зелёных шаров -события независимые, то для определения вероятности выбора 2 шаров одного цвета необходимо сложить полученные вероятности
Р(2од.цв) = 1/6 + 1/12 + 1/36 = 6/36 +3/36 +1/36 = 10/36 = 5/18
Пошаговое объяснение:
I вариант решения
пусть прямая симметричная прямой y=-2x+3 имеет вид у=kx+b
найдем точки пересечения прямой y=-2x+3 с осями координат относительно оси ОУ
с осью ОХ у=0; -2x+3=0; 2x=3; x=1,5; (1,5;0)
с осью ОY x=0; y=3; (0;3)
так как прямые симметричны то
- они обе проходят через точку (0;3)
- симметричная прямая проходит через точку противоположную точке (1,5;0) точку (-1,5;0)
⇒ симметричная прямая проходит через точки (0;3) и (-1,5;0)
подставим координаты точки (0;3) в уравнение симметричной прямой у=kx+b координату точки (0;3)
получим 3=к*0+b; b=3
подставим координаты точки (-1,5;0) и значение b=3 в уравнение симметричной прямой у=kx+b получим
0=-1,5к+3 ; 1,5к=3; k=3/1,5=2
подставим b=1; k=2 в уравнение у=kx+b
у=2х+3
===============================================
II вариант решения - тригонометрический
так как прямые симметричны то их углы наклона к оси ОХ будут в сумме давать 180°
так как tg(180°-а)=-tga то угловые коэффициенты симметричных прямых будут к₁ и к₂ противоположными числами а значение b₁ и b₂ будут одинаковыми так как обе прямые пересекают ось ОУ в одной точке ⇒ к₂=-к₁=-(-2)=2; b₂=b₁=3
уравнение прямой симметричной прямой y=-2x+3 относительно оси ОУ
у=2х+3