Задание 1. Вычислить двойной интеграл, если область D-треугольник с вершинами A(2;3), B(7;2), C(4;5)(задание на фото) + рисунок к ответу. Задание 2. Вычислить двойной интеграл и начертить рисунок f(x;y)=xy^3 D: y=x^2; y=4x за ответ заранее.
1) 3 * 15 = 45 - сума деяких п'ятнадцяти чисел; 2) 5 * 7 = 35 - сума деяких семи чисел; 3) 45 + 35 = 80 - сума всіх двадцяти двох чисел; 4) 80 : 22= 3 14/80 = 3 7/40- середнє арифметичне всіх двадцяти двох чисел.
При діленні 80 на 22 виходить дріб три цілих чотирнадцять вісімдесятих, коли дріб скорочуємо, то виходить три цілих і сім сорокових. Якщо ви не вчили дробів звичайних, то можна написати в десяткових: 80 : 22 = 3,64 але це приблизно, тому що виходить три цілих і шістдесят три в періоді, тобто 3,6363636363, ми заокруглюємо до 3,64.
А) x^3 + y^3 - 6xy = 0
Производная неявно заданной функции.
3x^2 + 3y^2*y' - 6y - 6x*y' = 0
Делим всё на 3
x^2 + y^2*y' - 2y - 2x*y' = 0
y'*(y^2 - 2x) = - x^2 + 2y
y' = (-x^2 + 2y) / (y^2 - 2x)
Б) y = (sin x)^(5x/2)
Производная такой функции равна сумме производных от степенной и от показательной функции.
y = f(x)^g(x)
y' = g*f^(g-1) *f'(x) + f^g*ln |f|*g'(x)
В нашем случае f = sin x; g = 5x/2.
y' = (5x/2)*(sin x)^(3x/2)*(cos x) + (sin x)^(5x/2)*(ln |sin x|)*5/2
В) x = √(2t - t^2); y = (1-t)^(-2/3)
y'(x) = dy/dx = (dy/dt) : (dx/dt)
dx/dt = (-2t+2) / [2√(2t-t^2)] = (-t+1) / √(2t-t^2)
dy/dt = -(-2/3)*(1-t)^(-5/3) = (2/3) / (1-t)^(5/3)
dy/dx = [(2/3) / (1-t)^(5/3)] : [(-t+1) / √(2t-t^2)] =
= [(2/3)*√(2t-t^2)] / [(1-t)^(5/3)*(1-t)] = [2/3*√(2t-t^2)] / [(1-t)^(8/3)]