Пошаговое объяснение:
4 6/7+(у-8 8/7)=9 2/7
у-8 8/7=9 2/7 - 4 6/7
у-8 8/7=4 3/7
у=4 3/7+8 8/7
у=13 4/7
(это если 4 6/7 - это 4 целых 6/7, а не 4•6/7)
Проверим это правило посчитав определитель второй степени:
Поменяем столбцы местами:
Если брать некоторые абстрактные значения:
Пусть
Поменяем столбцы местами:
Далее можно было бы рассмотреть определитель n*n, но мне кажется, что и эта демонастрация будет весомым подкреплением моего заверения: что при перестановке столбцов знак определителя меняется на противоположный.
Во-первых, очень часто в системе уравнений вообще невозможно посчитать определитель, так как матрица отвечающая системе оказывается не квадратной.
А во-вторых, разумеется, определитель системы поменяет знак, если системе будет отвечать квадратная матрица и вы переставите столбцы.
Главное не путать матрицу элементов и определитель этой матрицы, это разные сущности!
Когда вы переставляете столбцы - вы меняете определитель, а система остается эквивалентной (когда перестановка осуществляется в пределах левой части, или в пределах правой. При переносе столбцов из левой в праву, или из правой в левую, надо домножать столбец на -1).
ответ:y=14 целых 6:7 или 14,857142
Пошаговое объяснение: