ответ:дострой до параллелограмма: найдем точку А: 5x-2y-5=0 3x-2y-7=0 A(-1;-5) т. P- точка пересечения диагоналей, найдем координаты т. D, симметричной А относительно ВС: D(x;y) -1=(x-1)/2 -1=(y-5)/2 => т. D(-1;3) уравнение прямой, параллельной АВ и проходящей через точку D: 5(x+1)-2(y-3)=0 <=> 5x-2y+11=0- уравнение прямой DC найдем координаты точки С: 3х-2у-7=0 5x-2y+11=0 C(-9;-17) уравнение стороны ВС по двум точкам: x+1=(y+1)/2 <=> 2x-y+1=0 - уравнение искомой стороны Пошаговое объяснение:ну хз
1. Найдем точки АВС.
x+y=2 и 2x-y=-2
y = 2 - x
y = 2x + 2 - уравнения прямых:
2. Найдем точку пересечения:
2 - x = 2x + 2
2x = 4
x = 2
y = 0
точка А (2;0) - координаты
Стороны x+y=2 - AB
2x-y=-2 - АС , следовательно
уравнение стороны ВС
x-2y=2
x - 2y - 2 = 0 - уравнение стороны ВС
Вектор с координатами (1, -2) перпендикулярен стороне ВС.
Используя этот вектор как направляющий, построим уравнение прямой, проходящей через точку А.
Прямая будет перпендикулярна ВС, будет и высотой.
Направляющий вектора (1, -2) ( BC) точка А (2,0)
(x - 2)/1 = y/-2
или
y = 4 - 2x - искомое уравнение высоты.