1) 9 - 2 · (-4х + 7) = 7
2 · (-4х + 7) = 9 - 7
2 · (-4х + 7) = 2
-4х + 7 = 2 : 2
-4х + 7 = 1
-4х = 1 - 7
-4х = -6
х = -6 : (-4)
х = 1,5
Проверка: 9 - 2 · (-4 · 1,5 + 7) = 7
9 - 2 · (-6 + 7) = 7
9 - 2 · 1 = 7
7 = 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2) 9 + 10 · (3х - 10) = 2
10 · (3х - 10) = 2 - 9
10 · (3х - 10) = -7
3х - 10 = -7 : 10
3х - 10 = -0,7
3х = 10 - 0,7
3х = 9,3
х = 9,3 : 3
х = 3,1
Проверка: 9 + 10 · (3 · 3,1 - 10) = 2
9 + 10 · (-0,7) = 2
9 + (-7) = 2
2 = 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3) 7 + 9 · (4х + 5) = -2
9 · (4х + 5) = -2 - 7
9 · (4х + 5) = -9
4х + 5 = -9 : 9
4х + 5 = -1
4х = -1 - 5
4х = -6
х = -6 : 4
х = -1,5
Проверка: 7 + 9 · (4 · (-1,5) + 5) = -2
7 + 9 · (-1) = -2
7 - 9 = -2
-2 = -2
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение:
2)290/2=145(т)-продали бензина
3)145+120=265(т)-бензина привезли на станцию