ответ:Определим длину окружности при различных размерах радиуса по формуле С - длина окружности с радиусом r, п = 3,14, тогда получим:
1. Если радиус равен 24 см, тогда:
С = 2 * 3,14 * 24 см = 6,28 * 24 см = 150,72 см.
2. Если радиус равен 4,7 дм, тогда:
С = 2 * 3,14 * 4,7 дм = 6,28 * 4,7 дм = 29,516 дм.
3. Если радиус равен 18,5 м, тогда:
С = 2 * 3,14 * 18,5 м = 6,28 * 18,5 м = 116,18 м.
ответ: в итоге получили, что окружность при радиусе 24 см будет равна 150,72 см; при радиусе, равном 4,7 дм длина окружности составит 29,516 дм, а при радиусе, равном 18,5 м, длина окружности будет составлять 116,18 м.
Пошаговое объяснение:
Пошаговое объяснение:
Функция двух переменных z=f(x,y)
z=x³+2xy+y²-3x+5y+18;
1. берем частные прозводные по x и y (здесь должны стоять знаки частных производных)
dz/dx=3x²+2y-3;
dz/dy=2x+2y+5;
2. приравниваем их к 0:
3x²+2y-3=0;
2x+2y+5=0;
решаем систему уравнений
3x²+2y-3=0;
y= -(5+2x)/2;
3x²-(2x+5)/2-3=0;
3x²-x-5/2-3=0;
3x²-x-11/2=0; D=1+12*11/2=66; √D=√66=8,1
дискриминант некрасивый ((
x₁₂=1/6(1±8,1); x₁=1.5; x₂=-1,2
y₁=-(5+2*1,5)/2= -4
y₂=-(5+2*(-1,2))/2= -1,3
получаем координаты критических точек
x₁=1.5; y₁= -4; N₁
x₂=-1,2; y₂= -1,3. N₂
3. берем вторую частную производную
d²z/dx²=6x= A
d²z/dy²=2= C
d²z/dxdy=6x+2= B
4. составляем определители для обоих критических точек
x₁=1.5; y₁= -4; N₁; A=6*1,5=9;
B=6*1,5+2=11;
C=2;
Δ=lA Bl Δ=l 9 11 l
lB Cl; l 11 2 l= 18-121=-4<0 экстремума нет
x₂=-1,2; y₂= -1,3. N₂ A=6*(-1,2)=-7,2
B=6*(-1,2)+2=-5,2
C=2
Δ=l -7,2 -5,2 l
l -5,2 2 l= -14,4+27=12,6>0 экстремум есть, и т.к. А=-7,2<0, то в этой точке максимум.
Примерно так...
х-4,7=5,3
х=5,3+4,7
х=10
3,6-а=14,5 :5,8
3,6-а=2,5
а=3,6-2,5
а=1,1