Скорее всего , т.к мы ищем F(x) , то точки , что ты указала - это точки по х => просто подставляй значение в данную зависимость . 1) а) x=-1 F(x)= -1 +1 / -1 = 0 f(x)=0 b) x=1/2 F(X)=1/2 +1 / 1/2 f(x)= 3 c) x=10 F(x)=10 +1 / 10 f(x) =11/10= 1.1 2) a )x=-pi/4 F(x)=3cos( -pi/4- pi/4) F(x)= 3cos (-pi/2) cos(+-pi/2)=0 => F(x)=0 b) X=0 F(x) = 3cos(0 - pi/4) F(x)=3cos(-pi/4) cos(+-pi/4)=корень из 2/2 => F(x)=3 корня из 2 /2 с)x=pi F(x)=3cos(pi-pi/4) F(x)=3cos(3/4pi) f(x)= -3 корня из 2 /2
Немного теории. D7 - важнейший аккорд доминантовой функции, который состоит из четырех звуков, расположенных по терциям. Строится в натуральном мажоре и гармоническом миноре (VII#). Интервальный состав: б.3+м.3+м.3. Разрешение: неполное тоническое трезвучие с утроенной тоникой. Обращения D7: I. D65 - квинтсекстаккорд: м.3+м.3+б.2. Разрешение: T53/t53 с удвоенной тоникой. II. D43 - терцквартаккорд: м.3+б.2+б.3. Разрешение: полное тоническое трезвучие (T53/t53) III. D2 - секундаккорд: б.2+б.3+м.3. Разрешение: тонический секстаккорд (T6/t6) с удвоенной тоникой
Обозначим среднее число, как С (Centre), левое от него L (Left), правое от центра R (Right), вверх от центра U (Up) и вниз от центра D (Down). Оставшиеся по углам числа обозначим, как x, y, z и t.
x U y
L C R
z D t
Сумма в верхнем левом квадрате 2х2: x + U + L + C ;
Сумма в верхнем правом квадрате 2х2: U + y + C + R ;
Сумма в нижнем левом квадрате 2х2: L + C + z + D ;
Сумма в нижнем правом квадрате 2х2: C + R + D + t ;
Сумма этих четырёх сумм будет:
S = ( x + U + L + C ) + ( U + y + C + R ) + ( L + C + z + D ) + ( C + R + D + t ) =
= x + 2U + 2L + 4C + y + 2R + z + 2D + t =
= x + y + z + t + 2 ( U + L + R + D ) + 4C ;
Нам нужно добиться минимальности S, тогда в натуральные числа нужно брать минимальные натуральные числа, а значит и число 1. Величина числа C влияет на общую сумму сильней всего, поскольку число С берётся 4 раза, с коэффициентом 4, т.е. как 4С, поэтому в первую очередь минимизировать нужно именно число С. Итак, С = 1 , а 4С=4 .
Оставшиеся величины U, L, R и D влияют на общую сумму с удвоенной силой, поскольку величина ( U + L + R + D ) берётся 2 раза, с коэффициентом 2, т.е. как 2( U + L + R + D ), поэтому в эти величины нужно взять 4 минимальные натуральные числа отличные от единицы, т.е. числа 2, 3, 4 и 5, всё равно в каком именно порядке, т.е. просто:
( U + L + R + D ) = ( 2 + 3 + 4 + 5 ) = 14 ;
2 ( U + L + R + D ) = 28 ;
Мы знаем, что полная сумма должна быть равна 50, т.е.:
x + U + y + L + C + R + z + D + t = 50 .
( x + y + z + t ) + ( U + L + R + D ) + C = 50 .
Подставим сюда величины, которым мы уже присвоили определённые значения:
( x + y + z + t ) + 14 + 1 = 50 .
x + y + z + t = 35 .
Мы никак не ограниченны в выборе разных чисел x, y, z и t , так что вполне можем подобрать какие-то натуральные числа, чтобы это выполнялось, например ( x + y + z + t ) = ( 7 + 8 + 9 + 11 ) .
Все условия выполнены, числа взяты минимальные, в сумме квадратика 3х3 они дают 50, теперь посчитаем сумму всех сумм 2х2:
S = x + y + z + t + 2 ( U + L + R + D ) + 4C = 35 + 28 + 4 = 35 + 32 = 67 ;
1) а) x=-1
F(x)= -1 +1 / -1 = 0
f(x)=0
b) x=1/2
F(X)=1/2 +1 / 1/2
f(x)= 3
c) x=10
F(x)=10 +1 / 10
f(x) =11/10= 1.1
2) a )x=-pi/4
F(x)=3cos( -pi/4- pi/4)
F(x)= 3cos (-pi/2)
cos(+-pi/2)=0 => F(x)=0
b) X=0
F(x) = 3cos(0 - pi/4)
F(x)=3cos(-pi/4)
cos(+-pi/4)=корень из 2/2 => F(x)=3 корня из 2 /2
с)x=pi
F(x)=3cos(pi-pi/4)
F(x)=3cos(3/4pi)
f(x)= -3 корня из 2 /2