М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Samsas
Samsas
21.11.2021 16:15 •  Математика

Надо решить пример и объяснить мне 56,9+49=

👇
Ответ:
abduleuloew201
abduleuloew201
21.11.2021
56,9+49=105,9
ну смотри число 56,9 десятичное то есть оно может быть каким угодно хоть 56,5 и так далее
49  целое число 
56,9 десятичное
тут ничего сложного прибавляешь 56 и 49 это будет равно 105 и прибавляешь ,9
например когда 5,6+5,3
смотри здесь так же прибавляешь 5+5=10 и потом 0,6+0,3=0,9
10+0,9=10,9
когда 5,6+5,7 5+5=10 а потом 0,6+0,7=1,3 потому что получается 13 
5,6+5,7=11,3   10+1,3=11,3

при вычитании тоже самое 89-6,7 89-6=83 и из 83-0,7=82,3
еденица значит 1,0 это так же как и с обычными числами просто с запятыми 
еще один пример 10-5,9 10-5=5   5-0,9=4,1
4,8(99 оценок)
Открыть все ответы
Ответ:
bilpi
bilpi
21.11.2021

Пусть

а1 = 2 - количество очков, набранных за первую минуту игры,

а2 = 4 - количество очков, набранных за вторую минуту,

а3 = 8 - количество очков, набранных за третью минуту,

an - количество очков, набранных за последнюю минуту.

Количество очков постоянно удваивается, значит дело мы имеем с геометрической прогрессией со знаменателем q = 2.

Каждую минуту очки суммируются, т.е. актуальна будет формула суммы первых n членов прогрессии. Формула выглядит так:

К тому же, эта сумма должна быть не меньше 30 000

Ничего не остается, как вручную подобрать n.

При n = 14 выражение 2n будет больше 15 001 (214 = 16384). Это значит, что через 14 минут Митя наберет больше 30 000 очков и перейдет на следующий уровень.

ответ: 14.

 

4,5(57 оценок)
Ответ:
Hactenьka
Hactenьka
21.11.2021
Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:
"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".
Кантор (крупнейший немецкий историк математики) считает, что равенство 32+42=52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I .
По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при прямоугольных треугольников со сторонами 3, 4 и 5.
Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой- на критическом изучении греческих источников, Ван-дер-Варден
(голландский математик) сделал следующий вывод:
"Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."
Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э.

Теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о еѐ широком применении.
Теорема почти всюду носит имя Пифагора, но в настоящее время все согласны с тем, что она была открыта не Пифагором. Однако одни полагают, что он первым дал еѐ полноценное доказательство, другие же отказывают ему и в этой заслуге.
Доказательство теоремы считалось в кругах учащихся средних веков очень трудным и называлось "ослиным мостом" или "бегством убогих", так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии.
В некоторых списках «Начал» Евклида теорема Пифагора называлась теоремой Нимфы,
«теорема – бабочка», по-видимому из-за сходства чертежа с бабочкой, поскольку словом «нимфа»
греки называли бабочек. Нимфами греки называли еще и невест, а также некоторых богинь.
.
Учащиеся даже рисовали карикатуры и составляли стишки вроде этого:
Пифагоровы штаны
Во все стороны равны.
Формулировки теоремы тоже различны. Общепринятой считается следующая:
"В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов".
4,8(98 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ