чтобы найти площадь диагонального сечения надо сначала найти диагональ, её можно найти по теореме пифагора. диагональ будет равна 5√2, следовательно площадь диагонального сечения будет равна 25√2 см2
а объем куба будет равен 5*5*5= 125 см3
Пошаговое объяснение:
Для геометрических тел с правильным многоугольником в основании можно провести диагональ последнего. Если эту линию спроецировать к вершине (для пирамиды) либо вершинам, например, для куба или параллелограмма, получим диагональное сечение объёмного тела. Если площадь куба вычисляется путём возведения длины стороны в квадрат, то с размером занимаемой сечением поверхности дело сложнее.
Секущая площадь куба имеет форму прямоугольника, где одна пара сторон представлена рёбрами кубика, вторая – диагоналями граней. Для вычисления её площади нужна только длина ребра правильного прямоугольника, ведь одна из них выполняет роль высоты. Длина диагонали для треугольников, где высота – это гипотенуза, а рёбра – катеты, определяется по формуле a*√2. Занимаемая диагональным сечением куба площадь равняется:
S = a * a * √2 = a²*√2.
Диагональное сечение куба - это прямоугольник, у него меньшая сторона совпадает с ребром, а большая - с диагональю грани (основания). Таким образом, чтобы найти площадь диагонального сечения куба, нужно воспользоваться формулой площади прямоугольника: S(пр) = a * b.
3)
x = 6 - y
5*(6 - y) - 2y = 9
30 - 5y - 2y = 9
-7y = -21
y = 3
x = 6 - 3 = 3
4)
x = 6y - 2
2*(6y - 2) + 3y = 11
12y - 4 + 3y = 11
15y = 15
y = 1
x = 6*1-2 = 4
5)
x = 5y + 4
4*(5y+4) - 3y = -1
20y + 16 - 3y = -1
17y = -17
y = -1
x = 5 * (-1) + 4 = -1
2)