Пошаговое объяснение:
y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y=(-4x-4)/5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5*(6/29)-2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ=(k₂-k₁)/(1+k₁k₂)
где k₁ и k₂ угловые коэффициенты, в наших уравнения они равны
k₁=5; k₂=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k₁k₂=0):
1+5*(-4/5)=1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ=(-4/5-5)/-3=29/15
φ=arctg(29/15) ≈ 1,0934 рад ≈ 63°
Y=5x-2 y=5x-2 y=5x-2
4x+5y+4=0 y = (-4x-4) / 5 y=-4x/5-4/5
а) 5x-2=-4x/5-4/5
5x+4x/5=-4/5+2
29x/5=6/5
x=6/29 y=5 * (6/29) - 2=30/29-58/29=-28/29
Точка пересечения прямых (6,29;-28.29)
б) угол между прямыми можно найти по формуле
tgφ = (k2-k1) / (1+k1k2)
где k1 и k2 угловые коэффициенты, в наших уравнения они равны
k1=5; k2=-4/5
Проверим будут ли прямые перпендикулярны (условие перпендикулярности прямых 1+k1k2=0) :
1+5 * (-4/5) = 1-4=-3≠0 - значит прямые не перпендикулярны
Подставляем значения коэффициентов в формулу нахождения угла:
tgφ = (-4/5-5) / - 3=29/15
φ=arctg (29/15) ≈ 1,0934 рад ≈ 63° 5x - 2 = -0,8x - 0,8;
5x + 0,8x = 2 - 0,8;
5,8x = 1,2;
x = 1,2 / 5,8 = 12/58 = 6/29.
y = 5x - 2 = 5 * 6/29 - 2 = 30/29 - 58/29 = -28/29.
(x; y) = (6/29; -28/29). tg(α1) = k1 = 5;
tg(α2) = k2 = -0,8;
tgα = |tg(α1 - α2)|;
tgα = |(tg(α1) - tg(α2)) / (1 + tg(α1)tg(α2))|;
tgα = |(k1 - k2) / (1 + k1k2)|;
tgα = |(5 + 0,8) / (1 - 5 * 0,8)|;
tgα = |5,8 / (-3)| = 29/15;
α = arctg(29/15).
а) точка пересечения прямых: (6/29; -28/29);
По определению производительность труда есть количество времени, затраченное на изготовление единицы продукции.
Имеем функцию U(t), показывающую количество продукции, произведенной от сотворения мира до некоторого момента времени.
За некоторый промежуток времени Dt с момента t1 будет произведено:
S=U(t1+Dt) - U(t1);
Тогда производительность труда на промежутке [t1,t1+Dt]:
П1=Dt/S=Dt/(U(t1+Dt)-U(t1));
Предел П1(Dt,t1) при Dt -> 0 даёт нам производительность труда в момент времени t1.
П=1/(-5*t1^2+40*t1+80)
1) Для получения максимального/минимального значения производительности труда исследуем функцию П (t1) на экстремумы.
Для этого приравниваем первую производную П'(t1) к нулю ("скорость" изменения функции в точке экстремума равна нулю) и решаем полученное уравнение. Исходя из условия задачи берем только те корни, которые удовлетворяют 0<=t<=8 а также моменты времени t1=0 и t1=8.
Подставляем полученные t1 в П (t1) и сравнив значения производительности выбираем максимальное.
2) Первая производная П (t1) дает скорость изменения производительности труда (V(t1)=П'(t1)),
вторая производная (A=V'(t1)=П''(t1)) - темп изменения производительности.
Соответственно скорость и темп изменения производительности через час после начала работы и за час до ее окончания будут:
V(1), A(1) и V(7), A(7);
Верхний график - изменение производительности труда во времени, нижний - U(t)
Пошаговое объяснение: