в результате решения задания выяснили, что дробь 8/15 > 7/12 .
Пошаговое объяснение:
Для того, чтобы сравнить две дроби, необходимо привести их к общему знаменателю. Наименьшим общим делителем для этих дробей будет являться число 60 . Найдем множители, на которые нужно умножить числитель и знаменатель:
60/15 = 4 ;
60/12 = 5 ;
подставим множители в исходные дроби, получим:
8/15 = 8 * 4/15 * 4 = 32/60 ;
7/12 = 7 * 5/12 * 5 = 35/60 ;
теперь можем сравнить дроби:
32/60 < 35/60 , а значит и 8/15 < 7/12 .
ответ: в результате решения задания выяснили, что дробь 8/15 > 7/12 .
Поставь лайк и отметить как лучшее решение
а) |7х|=24,5 (вычеслить)
7×|х|= 24,5 (разделяем обе стороны)
|х|=3,5 (рассмотрим все возможные случаи)
х=3,5 х=–3,5 (уравнения имеет 2 решения)
Х1=3,5 Х2=–3,5
б) |5х+2,1|=0,2 (рассмотреть все возможные случаи)
5х+2,1=0,2
5х+2,1=–0,2 (решить уравнения)
х=–0,38
х=–0,46 (уравнения имеет 2 решения)
Х1=–0,38 Х2=–0,46
с) |9х+27|-4=0,5 (перенести константу в правую часть уравнения)
|9х+27|=0,5+4 (вычислить)
|9х+27|=4,5 (рассмотреть все возможные случаи)
9х+27=4,5
9х+27=–4,5 (решить уравнения)
х=–2,5
х=–3,5 (уравнения имеет 2 решения)
Х1=–3,5 Х2=–2,5
Поставь лайк и отметить как лучшее решение