Пошаговое объяснение:
1. Найдем угловые коэффициенты k1 и k2 для заданных прямых, выразив функцию 'y' через аргумент 'x':
1)
(3a + 2)x + (1 - 4a)y + 8 = 0;
(1 - 4a)y = -(3a + 2)x - 8;
(4a - 1)y = (3a + 2)x + 8;
y = (3a + 2)/(4a - 1) * x + 8/(4a - 1);
k1 = (3a + 2)/(4a - 1).
2)
(5a - 2)x + (a + 4)y - 7 = 0;
(a + 4)y = -(5a - 2)x + 7;
y = -(5a - 2)/(a + 4) * x + 7;
k2 = -(5a - 2)/(a + 4).
2. Прямые перпендикулярны, если угловые коэффициенты удовлетворяют условию:
k1 * k2 = -1;
(3a + 2)/(4a - 1) * (-(5a - 2)/(a + 4)) = -1;
(3a + 2)/(4a - 1) * (5a - 2)/(a + 4) = 1;
(3a + 2)(5a - 2) = (4a - 1)(a + 4);
15a^2 + 4a - 4 = 4a^2 + 15a - 4;
11a^2 - 11a = 0;
11a(a - 1) = 0;
a1 = 0;
a2 = 1.
ответ: 0 и 1.
ответ: Ему понадобилось бы 7 часов
Пошаговое объяснение:
42 детали в час - 8 часов работы
48 деталей в час - за x часов работы
За 8 часов работы при скорости 42 детали в час рабочий изготовил
42×8 = 336 деталей
Узнаем, сколько времени бы ему понадобилось на то же кол-во деталей, что и раньше (336). Для этого составим пропорцию:
42/48 = 8/х
Воспользуемся основным свойством пропорции (произведение крайних членов равно произведению средних членов) и найдём х:
42×8 = 48×x
336 = 48×х
х = 336/48
х = 7
Т.е. при скорости 48 деталей в час рабочий выполнит ту же работу за 7 часов.
миледи мушкетёры
через 1 ч. 24км 0км
через 2 ч. 48км 0км
через 3 ч. 72км 36км
через 4 ч. 96км 72 км
через 5 ч. 120км 108км
через 6 ч. 144км 144км