М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tttyadoyan235
tttyadoyan235
10.02.2023 06:46 •  Математика

Вася,купив в магазине 3ручки,4 тетради и 6 жвачек, заплатил 65 рублей, а петя купив в том же магазине 1 ручку,2 тетради и 3 жвачки, заплатил 25 рублей. сколько стоит ручка?

👇
Ответ:
funisinfinity26
funisinfinity26
10.02.2023
3р+4т+6ж=65
1р+2т+3ж=25
умножаем второе на 2
2р+4т+6ж=50
от первого отнимаем это
1р=15руб
4,4(57 оценок)
Открыть все ответы
Ответ:
Hdzf2002
Hdzf2002
10.02.2023
Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания.
     Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день.
     Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,8(98 оценок)
Ответ:
Lukachyk2017
Lukachyk2017
10.02.2023
   Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания.
   Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день.
   Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,8(19 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ