М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ekirakosyan12
Ekirakosyan12
09.03.2022 14:23 •  Математика

При каком минимальном значении n формула трапеций обеспечивает вычисление определенного интеграла


При каком минимальном значении n формула трапеций обеспечивает вычисление определенного интеграла

👇
Ответ:
Ваняобана
Ваняобана
09.03.2022
Для решения данной задачи о вычислении определенного интеграла с использованием формулы трапеций, нам необходимо найти минимальное значение n - количество трапеций, чтобы получить достаточно точный результат.

Первым шагом, нужно разбить заданный интервал интегрирования [a, b] на n равных подинтервалов. Размер каждого подинтервала будет равен h, где h = (b - a) / n. В данной задаче это будет (1 - 0) / n = 1 / n.

Далее, продолжаем пошагово:

Шаг 1: Вычисляем значения функции f(x) на концах каждого подинтервала.

x_0 = a = 0, f(x_0) = f(0) = 0
x_1 = a + h = 0 + (1/n) = 1/n, f(x_1) = f(1/n)
x_2 = a + 2h = 0 + (2/n) = 2/n, f(x_2) = f(2/n)
...
x_n = b = 1, f(x_n) = f(1) = 1

Шаг 2: Суммируем значения функции для каждого подинтервала.

Сумма = (f(x_0) + 2*f(x_1) + 2*f(x_2) + ... + 2*f(x_n-1) + f(x_n)) * h / 2

Шаг 3: Вычисляем значение интеграла путем умножения суммы на h / 2.

Интеграл = Сумма * h / 2

Теперь, чтобы найти минимальное значение n, которое даёт достаточно точный результат, нужно использовать некоторую точность, предположим, мы хотим получить результат с точностью до epsilon. Тогда мы могли бы указать значение epsilon и прерывать вычисления, когда они достигнут необходимой точности. Однако, в данной задаче предполагается найти минимальное значение n, а не точность epsilon.

Чтобы найти минимальное значение n, мы можем воспользоваться формулой оценки погрешности формулы трапеций:

Погрешность ε <= (b - a)^3 * M / (12 * n^2),

где M - максимальное значение второй производной функции f(x) на интервале [a, b].

В данном случае функция f(x) = x^2 + 2x + 1, a = 0, b = 1.

Вычислим вторую производную функции:

f''(x) = 2.

Поскольку на интервале [0, 1] вторая производная константа, то берем M = 2.

Теперь мы можем записать неравенство для погрешности:

ε <= (1 - 0)^3 * 2 / (12 * n^2),

ε <= 2 / (12 * n^2),

Из этого неравенства мы можем решить для n:

2 / (12 * n^2) <= ε.

12 * n^2 >= 2 / ε,

n^2 >= 2 / (12 * ε),

n^2 >= 1 / (6 * ε).

Теперь найдем минимальное значение n:

n >= sqrt(1 / (6 * ε)).

Таким образом, минимальное значение n, чтобы формула трапеций обеспечивала вычисление определенного интеграла с заданной точностью, равно ceil(sqrt(1 / (6 * epsilon))), где ceil - функция округления вверх.
4,6(93 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ