М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Gadik228
Gadik228
18.03.2020 11:46 •  Математика

В урне имеется 8 последовательно занумерованных шаров. Из урны наугад одну за другой извлекают три шара. Какова вероятность того, что номера извлеченных шаров будут размещены в порядке возрастания? на укр мові:
В урні є 8 послідовно занумерованих куль. З урни навмання одну за одною витягують три кулі. Яка ймовірність того, що номери витягнутих куль будуть розміщені в порядку зростання?

👇
Открыть все ответы
Ответ:
tima3002
tima3002
18.03.2020
Понятие множества
Людям постоянно приходится иметь дело с различными совокупностями предметов, что повлекло за собой возникновение понятия числа, а затем и понятия множества, которое является одним из основных простейших математических понятий.
Теория множеств – это раздел математики, в котором изучаются общие свойства множеств.
Основатель научной теории множеств – немецкий математик
Георг Кантор.
Определение. Множеством называется совокупность, набор и т. д. однотипных элементов, воспринимаемых как единое целое.
Множества обозначают большими латинскими буквами. Например,
А = {Коля, Петя, Маша, Ира}, В = {1, 2, 7}, С = {1, 2, 3, 4, …, n, …}.
Все предметы, составляющие множества, называются элементами множества. Элементы множества обозначают маленькими латинскими буквами. Например, если элемент х принадлежит множеству К, то пишут
хК, если элемент х не принадлежит множеству К, то пишут хК.
Есть множество, в котором нет ни одного элемента. Его называют пустым множеством и обозначают Ø.
Множество может быть конечным, если оно состоит из конечного числа элементов, и бесконечным, если оно содержит бесконечно много элементов. Примером конечного множества может служить множество дней недели, примером бесконечного множества – множество натуральных чисел.
Из школьного курса вам известны примеры бесконечных числовых множеств – множеств натуральных(N), целых(Z), рациональных(Q), иррациональных(I) и действительных чисел (R).
Множество может быть задано:
• перечислением. Например, К = {2, 4, 20, 40};
• характеристическим свойством, т.е. свойством, характерным только для элементов этого множества. Например, .
Из элементов множества А = {Коля, Петя, Маша, Ира}, например, можно составить новое множество М = {Петя, Маша}. Оно характеризуется тем, что все элементы М принадлежат множеству А. Говорят, что М – подмножество множества А и пишут М А.
Множество М является подмножеством множества А, если всякий элемент множества М является элементом множества А и обозначают
МА.
Например, множество всех первокурсников является подмножеством множества всех студентов.

Для любого множества А справедливо:
1) Само множество является своим подмножеством, т.е. А А.
2) Пустое множество является подмножеством любого множества, т.е. Ø А.
Пример:
Сколько можно составить подмножеств множества В?
1. В = {0, 1}, тогда {0}В, {1}В, ØВ, {0, 1}В – четыре.
2. В = {1, 2, 3}, тогда {1}В, {2}В, {3}В, {1, 2}В, {1, 3}В,
{2, 3}В, ØВ, {1, 2, 3}В – восемь.
Можно доказать, что если в множестве n элементов, то оно имеет
2n подмножеств.
Множества считаются равными, если они состоят из одних и тех же элементов. А также множества А и В равны, если А В и В А.
Пусть А={2, 1, 3}, a В = {1, 2, 3} тогда А= В.

Примеры.
1) Пусть А – множество канцелярских товаров в аудитории, В –множество шариковых ручек в аудитории, тогда B ⊂ A.
2) Перечислим все подмножества множества A = {1; 2; 3}:
{1}, {2}, {3}, {1; 2}, {1; 3}, {2; 3}, {1; 2; 3}, ∅ .
Замечания.
1. Если A = B , то B A, A⊂ B.
2. Пустое множество является подмножеством любого множества: ∅ ⊂ A.
3. Знак ⊂ можно ставить только между множествами: B ⊂ A,
∅ ⊂ A.
4. Знак ∈ можно ставить только между элементом множества и
самим множеством: a∈{a; b; c}.
Операции над множествами, их свойства
Пусть все рассматриваемые множества являются подмножествами некоторого фиксированного множества, которое назовём универсальным и обозначим буквой U. Для геометрической иллюстрации операций над множествами воспользуемся диаграммами Эйлера – Венна, на которых универсальное множество изображают в виде прямоугольника, а остальные множества – в виде овалов, в частности кругов. Введём операции над множествами.
4,4(41 оценок)
Ответ:
danisdigger
danisdigger
18.03.2020
Тметим на координатной прямой точки с координатами -3 и 2. если точка расположена между ними, то ей соответствует число, которое больше -3 и меньше 2. верно и обратное: если число х удовлетворяет условию -3< x< 2 , то оно изображается точкой, лежащей между точками с координатами -3 и 2. множество всех чисел, удовлетворяющих условию -3< x< 2, называется числовым промежутком или просто промежутком от -3 до 2 и обозначается так: (-3; 2). на рисунках изображены множество чисел х, для которых выполняется неравенство х< 10 и х≤10. эти множества представляют собой промежутки, обозначаемые соответственно (-∞; 10) и (-∞; 10]. читается так: число х принадлежит промежутку от минус бесконечности (-∞) до 10 (х< 10) и число х принадлежит промежутку от минус бесконечности (-∞) до 10, включая число 10 (х≤10). знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. промежуток [3; 5] является пересечением промежутков [-1; 5] и [3; 7]. это можно записать так: [-1; 5]∩[3; 7]=[3; 5].промежутки [0; 4] и [6; 10] не имеют общих элементов. если множество не имеет общих элементов, то говорят, что их пересечение пусто. значит, пересечение промежутков [0; 4]∩[6; 10]=0. объединение числовых промежутков каждое число из промежутка [1; 7] принадлежит хотя бы одному из промежутков [1; 5] и [3; 7], то есть, либо промежутку [1; 5], либо промежутку [3; 7], либо им обоим. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают . промежуток [1; 7] является объединением промежутков [1; 5] и [3; 7]. это можно записать так:  заметим, что объединение промежутков не всегда представляет собой промежуток, например множество не является промежутком. 1. числовым промежутком называется множество всех чисел, удовлетворяющих неравенству.2. знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка.3. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. 4. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают .
4,5(81 оценок)
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ