М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Пупырка521
Пупырка521
31.01.2022 15:23 •  Математика

Найти угол между градиентами функций u и v в точке М0


Найти угол между градиентами функций u и v в точке М0

👇
Ответ:
kura2165
kura2165
31.01.2022

ОТВЕТ: \dfrac{2\pi}{3},  или 120\textdegree.

Объяснение: Найдем частные производные 1-го порядка функции v:

v'_x=\dfrac{3x^2}{\sqrt2}-0+0= \dfrac{3x^2}{\sqrt2};\\\\v'_y=0-\dfrac{3y^2}{\sqrt2}+0=- \dfrac{3y^2}{\sqrt2};\\\\v'_z=0-0+\dfrac{24z^2}{\sqrt3}=\dfrac{24z^2}{\sqrt3}.

Градиент функции v:

\nabla v=(v'_x; v'_y; v'_z)=(\dfrac{3x^2}{\sqrt2}; -\dfrac{3y^2}{\sqrt2}; \dfrac{24z^2}{\sqrt3});\\\\\nabla v|_{M_0}=(\dfrac{3\cdot2}{\sqrt2}; -\dfrac{3\cdot2}{\sqrt2}; \dfrac{24\cdot3}{4\sqrt3}) =(3\sqrt2; -3\sqrt2; 6\sqrt3).

Аналогичным образом находим градиент функции u в точке M_o:

u'_x=\dfrac{2x}{y^2z^3};\\\\u'_y=\dfrac{-2x^2}{y^3z^3};\\\\u'_z= \dfrac{-3x^2}{y^2z^4};\\\\\nabla u=(u'_x; u'_y; u'_z)=(\dfrac{2x}{y^2z^3}; \dfrac{-2x^2}{y^3z^3};\dfrac{-3x^2}{y^2z^4});\\\\\nabla u|_{M_0}=(\dfrac{2\sqrt2\cdot2^3}{2\cdot3\sqrt3}; \dfrac{-2\cdot2\cdot2^3}{2\sqrt2\cdot3\sqrt3};\dfrac{-3\cdot2\cdot2^4}{2\cdot3^2})=(\dfrac{8\sqrt6}{9}; -\dfrac{8\sqrt6}{9}; -\dfrac{16}{3}).

По определению скалярного произведения:

\nabla v\cdot\nabla u=|\nabla v|\cdot|\nabla u|\cdot \cos\varphi\Rightarrow\\\\\Rightarrow \cos\varphi=\dfrac{\nabla v\cdot\nabla u}{|\nabla v|\cdot|\nabla u|}.

Модули градиентов:

|\nabla v|=\sqrt{(3\sqrt2)^2+(-3\sqrt2)^2+(6\sqrt3)^2}=\sqrt{18+18+108}=\sqrt{144}=12;\\\\|\nabla u|=\sqrt{(\dfrac{8\sqrt6}{9})^2+(-\dfrac{8\sqrt6}{9})^2+(-\dfrac{16}{3})^2}=\sqrt{\dfrac{8^2\cdot6}{81} +\dfrac{8^2\cdot6}{81} +\dfrac{16^2}{9} }=\\\\=\sqrt{\dfrac{2^2\cdot3\cdot8^2+3^2\cdot16^2}{81}}=\dfrac{\sqrt{2^8\cdot3+2^8\cdot3^2}}{9}=\dfrac{2^4\sqrt{12}}{9}=\dfrac{16\sqrt{4\cdot3}}{9}=\dfrac{32\sqrt{3}}{9}.

Скалярное произведение градиентов:

\nabla v\cdot \nabla u=3\sqrt2\cdot\dfrac{8\sqrt6}{9}+(-3\sqrt2)\cdot(-\dfrac{8\sqrt6}{9})-6\sqrt3\cdot\dfrac{16}{3}=2\cdot\dfrac{8\cdot\sqrt{12}}{3}-32\sqrt3=\dfrac{32\sqrt3}{3}-32\sqrt3=-\dfrac{64\sqrt3}{3}.

Косинус искомого угла:

\cos\varphi=\dfrac{-\dfrac{64\sqrt3}{3}}{12\cdot\dfrac{32\sqrt3}{9}} =-\dfrac{64\sqrt3}{3}:\dfrac{4\cdot32\sqrt3}{3}=-\dfrac{64\sqrt3}{3} \cdot\dfrac{3}{2\cdot64\sqrt3}=-\dfrac{1}{2}.

Отсюда искомый угол:

\varphi =\arccos(-\dfrac{1}{2})=\dfrac{2\pi}{3}=120\textdegree.

4,4(9 оценок)
Открыть все ответы
Ответ:
мейірімді
мейірімді
31.01.2022

Пошаговое объяснение:

1)площадь равных фигур равны  - верно

2)если равны площади фигур,то равны и фигуры - неверно

3)периметры равны прямоугольнику равны  -верно

4)если периметры прямоугольников равны,то равны и прямоугольники  - неверно

5)если площади прямоугольников равны, то равны и прямоугольники  -неверно

6)площадь прямоугольника равна произведению его длин и ширины -верно

7)площадь квадрата равна квадрату его стороны -верно

8)площадь всех фигур равна сумме площадей её частей  - верно

9)если периметры квадратов равны, то равны и их площади  -верно

ответ : 136789

4,7(46 оценок)
Ответ:
timon201
timon201
31.01.2022

Пошаговое объяснение:

1)площадь равных фигур равны  - верно

2)если равны площади фигур,то равны и фигуры - неверно

3)периметры равны прямоугольнику равны  -верно

4)если периметры прямоугольников равны,то равны и прямоугольники  - неверно

5)если площади прямоугольников равны, то равны и прямоугольники  -неверно

6)площадь прямоугольника равна произведению его длин и ширины -верно

7)площадь квадрата равна квадрату его стороны -верно

8)площадь всех фигур равна сумме площадей её частей  - верно

9)если периметры квадратов равны, то равны и их площади  -верно

ответ : 136789

4,7(49 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ