М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
liq2354234
liq2354234
02.10.2021 00:31 •  Математика

Дана трапеция ABCD с основаниями AD и BC. Биссектрисы её углов A и B пересекаются в точке M, а биссектрисы углов C и D пересекаются в точке N. Найдите длину отрезка MN, если AB=5, BC=7, CD=8, AD=12.

👇
Ответ:
GoshaLLL
GoshaLLL
02.10.2021

(см. объяснение)

Пошаговое объяснение:

Покажем сначала, что биссектрисы AM и BM пересекаются под прямым углом. Действительно, пусть ∠ABC=α и ∠BAD=β. Тогда α+β=180°. Так как биссектриса делит угол пополам, то верно, что ∠ABM+∠BAM=α/2+β/2=90°, поэтому и ∠BMA=90°.

Опустим из точки M перпендикуляр на сторону BC. Получим ME⊥BC. Тогда ΔBMA~ΔBEM по двум углам. Из подобия треугольников следует, что AB/BM=AM/ME.

Опустим из точки M перпендикуляр на сторону AD. Получим, MT⊥AD. Тогда ΔBMA~ΔATM по двум углам. Из подобия треугольников следует, что AB/AM=BM/MT, то есть AB/BM=AM/MT.

Так как AB/BM=AM/ME и AB/BM=AM/MT, то верно, что AM/ME=AM/MT или ME=MT.

Так как расстояния от точки M до прямых BC и AD одинаковы, то точка M лежит на средней линии трапеции.

Применив аналогичное рассуждение, получаем, что точка N тоже лежит на средней линии трапеции.

Тогда MN - это часть средней линии трапеции, то есть MN||BC и MN||AD.

Проведем среднюю линию трапеции FG. По определению FG=(7+12)/2=19/2.

Так как треугольники ΔBMA и ΔCND прямоугольные, а F и G - середины их гипотенуз AB и CD, то FM и GN - это медианы, равные AB/2 и CD/2 соответственно, то есть FM=5/2 и GN=4.

Понятно, что MN=FG-FM-GN, а значит MN=19/2-5/2-4=3.

Задача решена!


Дана трапеция ABCD с основаниями AD и BC. Биссектрисы её углов A и B пересекаются в точке M, а биссе
4,4(33 оценок)
Открыть все ответы
Ответ:
alfiea7
alfiea7
02.10.2021

Пошаговое объяснение:

Интегрирование по частям

Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение

Интегрирование по частям

называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.

Решение онлайн

Видеоинструкция

С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.

infinity

pi

1/2*(x+1)*exp(x)

? dx

ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн

Применение метода интегрирования по частям

В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:

Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).

Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).

Типовые разложения по частям

Вид интеграла Разложения на части

∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx

∫ln(P(x))dx U=ln(P(x)); dV=dx

∫arcsin(ax)dx U=arcsin(ax); dV=dx

U=ln(x); dV=dx/x

При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx,  и   Вряд ли интеграл ∫x2exdx можно считать проще исходного.

Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.

Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.

ПРИМЕР №1. Вычислить ∫xexdx.

Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.

ПРИМЕР №2. Вычислить ∫xcos(x)dx.

Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C

ПРИМЕР №3. ∫(3x+4)cos(x)dx

4,7(4 оценок)
Ответ:
lavanda16
lavanda16
02.10.2021

   

Математика – это наука, которая изучает величины, количественные отношения и пространственные формы.

Математика представляет собой основу фундаментальных исследований в естественных и гуманитарных науках. В силу этого значение её в общей системе человеческих знаний постоянно возрастает. Математические идеи и методы проникают в управление весьма сложными и большими системами разной природы: полетами космических кораблей, отраслями промышленности, работой обширных транспортных систем и других видов деятельности. Приложения различных областей математики стали неотъемлемой частью науки, в том числе: физики, химии, геологии, биологии, медицины, лингвистики, экономики, социологии и др.

4,7(38 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ