Уравнение геометрического места точек на плоскости ХОУ, равноудаленных от точек А (2;-3) и В (-4;1), имеет вид Выберите один ответ: 3х-2у-1=0 2у-3х+1=0 3х+2у+1=0 3х-2у+1=0 3х+2у-1=0
Поскольку неизвестных два: и а уравнение всего одно: то решений может быть бесконечно много.
Так как никаких иных условий не поставлено, попробуем найти хотя бы одно частное решение данного задания с целыми катетами, а если не получится, то с рациональными катетами.
Пусть
Тогда а значит:
Ни одно из значений – не является квадратом натурального числа, а значит, целых решений нет.
Для того чтобы найти рациональное решение, можно взять любой известный египетский треугольник. Например, со сторонами и и рассчитать катеты из подобия гипотенузы этого треугольника и нашего исходного треугольника с гипотенузой Ясно, что наш треугольник больше и относится к упомянутому египетскому, как т.е. больше него в раза, соответственно и катеты больше в раза, т.е. вместо катетов и исходного египетского нужно брать катеты и
Итак, в качестве частного решения мы нашли треугольник с катетами: и
*** проверка:
; ; ; ;
; ; ;
Можно взять и другой известный египетский треугольник. Например, со сторонами и и рассчитать катеты из подобия гипотенузы этого треугольника и нашего исходного треугольника с гипотенузой Ясно, что наш треугольник меньше и относится к упомянутому египетскому, как т.е. составляет от него часть: Соответственно и катеты меньше, т.е. вместо катетов и исходного египетского нужно брать катеты и
Итак, в качестве другого частного решения мы нашли треугольник с катетами: и
Можно взять и ещё какой-нибудь известный египетский треугольник. Например, со сторонами и и рассчитать катеты из подобия гипотенузы этого треугольника и нашего исходного треугольника с гипотенузой Ясно, что наш треугольник меньше и относится к упомянутому египетскому, как т.е. составляет от него часть: Соответственно и катеты меньше, т.е. вместо катетов и исходного египетского нужно брать катеты и
Итак, ещё одно частное решение: мы нашли треугольник с катетами: и
Ну и вообще можно брать любые треугольники с катетами и
О т в е т :
Три рациональных частных решения:
и ; и ; и кроме которых существует бесконечное число аналогичных рациональных решений.
Пошаговое объяснение:
Нам нужно составить уравнение геометрического места точек на плоскости ОXY равноудаленных от точек с координатами A (2; -3) и B (-4; 1).
Решать задачу будем следующим образом:
вспомним формулу для нахождения расстояния между точками на плоскости;
обозначим точки равноудаленные от А и В координатами (x; y);
запишем расстояния между точкой А и (x; y);
запишем расстояние между точками B и (x; y);
приравняем расстояния и выразим одну переменную через другую.
Вспомним формулу для нахождения расстояния на плоскости
Формула для нахождения расстояния между точками на плоскости выглядит так:
AB =
, где точки А и В заданы координатами A и B
Формулу мы вспомнили, теперь можем записать расстояние между точками А с координатами (2; -3) и (x; y) и точками B с координатами (-4; 1) и (x; y).
Составим уравнение геометрического места точек
Записываем расстояние между точкой A (2; -3) и (x; y):
Записываем расстояние между точками B (-4; 1) и (x; y):
Так как геометрического места точек на плоскости ОXY равноудаленных от точек A и B мы приравниваем полученные выражения:
Открываем скобки, переносим все слагаемые в право и приводим подобные.
или