Пусть x - производительность первого, а у - второго. Из первого условия составим первое уравнение приняв всю работу за единицу 1/(x+y)=16 Из второго условия задания получим второе уравнение y=2x подставим второе уравнение в первое можно найти производительности обоих штукатуров: x=1/48 y=1/24 Составим третье уравнение исходя из третьего условия. z - объем работы, который выполнит первый штукатур, работая со вторым поочередно, получим z/(1/48)+(1−z)1/24=30 48z+24−24z=30 x=0.25 (1−0.25)/(1/24)=18 ч проработает второй
Пусть x - производительность первого, а у - второго. Из первого условия составим первое уравнение приняв всю работу за единицу 1/(x+y)=16 Из второго условия задания получим второе уравнение y=2x подставим второе уравнение в первое можно найти производительности обоих штукатуров: x=1/48 y=1/24 Составим третье уравнение исходя из третьего условия. z - объем работы, который выполнит первый штукатур, работая со вторым поочередно, получим z/(1/48)+(1−z)1/24=30 48z+24−24z=30 x=0.25 (1−0.25)/(1/24)=18 ч проработает второй
ответ: 2; -3.
Пошаговое объяснение:
3x+5y=-9; [*5]
5x+6y=-8; [*(-3)]
15x+25y=-45;
-15x-18y=24;
Складываем
25y+(-18y)=-45+24;
7y=-21;
y=-3; Подставляем в исходное 3x+5y=-9:
3x+5(-3)=-9;
3x=-9+15;
3x=6;
x=2.