Для избавления от иррациональности в знаменателе необходимо вначале проанализировать знаменатель. Если знаменатель представляет собой выражение вида , то необходимо домножить и числитель, и знаменатель на этот корень (основное свойство дроби) Если знаменатель представляет собой выражение вида или , то числитель и знаменатель необходимо домножить на сопряжённое выражение (для первого: на ; для второго выражения на ), сведя числитель к формуле разности квадратов. Это алгоритм для квадратных корней. Для корней больше 2 степени сопряжённые ищутся иначе и по другим формулам.
1) Находим самую большую цифру - 9, после нее справа от 9 опять находим самое больше число - 8 и справа осталась цифра 5 985 оставляем, остальные семь переворачиваем
2) Со второй задачей проблема. Число открытых цифр =3 - нечетное количество и если мы перевернем любых 7 цифр, то количество открытых цифр будет четным. Отсюда следует, что первой открытой цифрой должен быть 0. Остальные цифры буду 3,6 и 5. Значит 5 оставляем открытой, а 0, 9, 3, 6, 8 переворачиваем. но это всего пять перевернутых цифр. Значит надо еще перевернуть 2 раза любую цифру, допустим 1, два раза подряд
Відповідь: 10,25
Покрокове пояснення: