Слово процент латинского происхождения и означает одну сотую часть чего-либо ( сравните цент - одна сотая доллара, центурион - начальник сотни)
1% - это одна сотая доля чего-либо.
1%=1:100=0,01
Поэтому для того, чтобы узнать содержание одного процента от целого, нужно всего лишь это целое (например, число) разделить на 100. Например,
1 процент от числа 70 это 70:100=0,7 .
1% от 700=700:100=7
или 700*0,01=7
Если процент больше одного, находят одну сотую числа и уможают на нужное количество процентов.
Пример:
3% от 300:
300:100*3=9 или 300*0,03=9
Так же находят процент от числа, выраженный не целым числом:
Число 180.
Найти 25,5% этого числа:
(180:100)*25,5= 45,9.
То есть,
чтобы найти процент от числа, нужно это число умножить на дробь, в числителе которой количество процентов, в знаменателе - 100.
Иначе:
перевести проценты в десятичную дробь (для этого следует разделить количество процентов на 100); и умножить число на эту дробь.
Так как
25,5%=0,255 ⇒
180*0,255=45,9
Целое число по проценту находят иначе.
Предположим, нужно найти число, если его 4% равны 20
Нужно найти сначала, чему равен 1%, и затем умножить содержание 1% на 100
20:4*100=500
То-есть узнать, чему равна одна сотая часть данной величины, например, числа, а затем умножить результат на 100 и получить целое, которое в 100 раз больше одной своей сотой доли.
Т.к. 4%=0,04, эта запись может выглядеть так:
20:0,04=500
Итак, чтобы найти полное число по его процентам, надо:
перевести проценты в десятичную дробь и данное число разделить на эту дробь.
Уравнение высот
Уравнение высоты через вершину B
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
y = 3/5x - 9/5 или 5y -3x +9 = 0
Данное уравнение можно найти и другим Для этого найдем угловой коэффициент k1 прямой AC.
Уравнение AC: y = -5/3x + 7/3, т.е. k1 = -5/3
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1.
Подставляя вместо k1 угловой коэффициент данной прямой, получим :
-5/3k = -1, откуда k = 3/5
Так как перпендикуляр проходит через точку B(3,0) и имеет k = 3/5,то будем искать его уравнение в виде: y-y0 = k(x-x0).
Подставляя x0 = 3, k = 3/5, y0 = 0 получим:
y-0 = 3/5(x-3)
или
y = 3/5x - 9/5 или 5y -3x +9 = 0
Найдем точку пересечения с прямой AC:
Имеем систему из двух уравнений:
3y + 5x - 7 = 0
5y -3x +9 = 0
Из первого уравнения выражаем y и подставим во второе уравнение.
Получаем:
x = 31/17
y = -12/17
D(31/17;-12/17)
Уравнение Медиан
Для Стороны ВС:
Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(1;2)
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(2;-1) и М(1;2), поэтому:
Каноническое уравнение прямой:
или
или
y = -3x + 5 или y + 3x - 5 = 0
Для стороны АВ:
Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(5/2;-1/2)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-1;4) и М(5/2;-1/2), поэтому:
Каноническое уравнение прямой:
или
или
y = -9/7x + 19/7 или 7y + 9x - 19 = 0
Для стороны АС
Обозначим середину стороны AC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(1/2;3/2)
Уравнение медианы BM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана BМ проходит через точки B(3;0) и М(1/2;3/2), поэтому:
Каноническое уравнение прямой:
или
или
y = -3/5x + 9/5 или 5y + 3x - 9 = 0
Длс СТороны ВС
Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
M(1;2)
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(2;-1) и М(1;2), поэтому:
Каноническое уравнение прямой:
или
или
y = -3x + 5 или y + 3x - 5 = 0