Кумир я не знаю, а что эту экзотика ещё преподают? Он нигде, кроме школ, никогда не использовался. Напишу только алгоритм. 1) Начало 2) Ввод исходного числа n. 3) n = n*n // возводим n в квадрат 4) n = 10*n // умножаем на 10. Теперь десятые доли стали единицами 5) n = [n] // оставляет целую часть, дробную отбрасываем 6) n = n - [n/10]*10 // вычисляем остаток от деления на 10, то есть цифру единиц. 7) Вывод n 8) Конец. Объяснение. Допустим, мы ввели n = 1,4. В 3 пункте мы умножили его само на себя, то есть возвели в квадрат. Стало n = 1,96. Нам нужно получить цифру 9. В 4 пункте мы умножили число на 10, получили n = 19,6. В 5 пункте отбросили дробную часть, стало n = 19. В 6 пункте самая трудная операция: n = n - [n/10]*10 = 19 - [1,9]*10 = 19 - 1*10 = 9 Таким образом, мы получаем последнюю цифру любого целого числа, то есть остаток от деления на 10. Вообще-то вместо этой сложной формулы во многих языках есть готовая функция Mod, дающая сразу остаток от деления. Пишется так: n = n Mod 10 Из числа 19 сразу получаем 9. Если такая функция есть в Кумире, используйте её. Если нет, тогда мою формулу.
Кумир я не знаю, а что эту экзотика ещё преподают? Он нигде, кроме школ, никогда не использовался. Напишу только алгоритм. 1) Начало 2) Ввод исходного числа n. 3) n = n*n // возводим n в квадрат 4) n = 10*n // умножаем на 10. Теперь десятые доли стали единицами 5) n = [n] // оставляет целую часть, дробную отбрасываем 6) n = n - [n/10]*10 // вычисляем остаток от деления на 10, то есть цифру единиц. 7) Вывод n 8) Конец. Объяснение. Допустим, мы ввели n = 1,4. В 3 пункте мы умножили его само на себя, то есть возвели в квадрат. Стало n = 1,96. Нам нужно получить цифру 9. В 4 пункте мы умножили число на 10, получили n = 19,6. В 5 пункте отбросили дробную часть, стало n = 19. В 6 пункте самая трудная операция: n = n - [n/10]*10 = 19 - [1,9]*10 = 19 - 1*10 = 9 Таким образом, мы получаем последнюю цифру любого целого числа, то есть остаток от деления на 10. Вообще-то вместо этой сложной формулы во многих языках есть готовая функция Mod, дающая сразу остаток от деления. Пишется так: n = n Mod 10 Из числа 19 сразу получаем 9. Если такая функция есть в Кумире, используйте её. Если нет, тогда мою формулу.
а) 28/5 * (-25/21) = -4 * 5/3 = -20/3 = -6 2/3
б) -20/9 * (-9/16) = 20/16 = 5/4 = 1,25
в) -763/650 = -1 113/650
г) -4242/0,07= -4242*100/7= -60600
д) 7.4 + 10.3 - 1.7 = 17.7 - 1.7 = 16
е) -0,027+0,3 = 0,273