Пошаговое объяснение:
2sin²x - 3sinx + 1 = 0.
Это квадратное уравнение относительно переменной sinx.
Заменим основную переменную.
sinx = t, где -1 ≤ t ≤ 1, тогда sin²x = t².
Получим следующее квадратное уравнение:
2t² - 3t + 1 = 0.
Решим его используя дискриминант квадратного уравнения:
D = 32 - 4 • 2 • 1 = 9 - 8 = 1;
t1 = (3 + 1) / 4 = 1, удовлетворяет условию -1 ≤ t ≤ 1;
t2 = (3 - 1) / 4 = 1 / 2, удовлетворяет условию -1 ≤ t ≤ 1.
Делаем обратную замену переменной:
sinx = 1 или sinx = 1 / 2;
x1 = п/2 + 2пk, где k ∈ Z;
или:
x2 = п/6 + 2пk, где k ∈ Z;
x3 = 5п/6 + 2пk, где k ∈ Z.
2 * 3 * 5 * 7 * 11 + 1= 2311. Число 2311 также простое. [ Т. е. произведение всех подряд идущих простых чисел от первого и до определенного и плюс 1 всегда будет давать простое число? Проверяем:
2 * 3 + 1 = 7,
2 * 3 * 5 + 1 = 31.
Но если числа идут не от первого простого и не подряд, то в результате простое число не всегда получается:
3 * 5 * 7 + 1 = 106 (составное)
2 * 5 * 7 + 1 = 71 (простое)
2 * 3 * 7 + 1 = 43 (простое)
3 * 5 * 7 * 11 + 1 = 1156 (составное)
3 * 11 * 13 + 1 = 430 (составное)
2 * 3 * 11 * 13 + 1 = 859 (простое)
Получается, что число 2 в этой формуле (n = p1 * p2 * … + 1) всегда приводит к простому числу в результате, независимо от того, какие взяты остальные простые числа. Без него всегда получается составное, также независимо от того, как и каком количестве взяты простые.]