1. Имеем дело с дифференциальным уравнением второго порядка с правой частью. Нужно найти общее решение неоднородного уравнения:
yо.н. = уо.о. + уч.н.
Где уо.о. - общее решение однородного уравнения, уч.н. - частное решение.
Найдём общее решение соответствующего однородного уравнения.
Перейдем к характеристическому уравнению, осуществив замену .
Общее решение однородного уравнения: yo.o. =
Теперь нужно найти частное решение неоднородного уравнения. Правую часть исходн. ДУ отметим как за две функции, т.е. и
Рассмотрим функцию Сравнивая с корнями характеристического уравнения, и, принимая во внимания, что n=1, частное решение будем искать в виде. yч.н.₁ =
И, вычислив первую и вторую производную: , подставим в исходное уравнение без функции .
Приравниваем коэффициенты при степени х:
уч.н.₁ = (x/3) - 2/9
Рассмотрим теперь функцию Аналогично сравнивая с корнями характеристического уравнения и принимая во внимая, что n=0, частное решение будем искать в следующем виде: уч.н.₂ =
И тогда первая и вторая производная равны соответственно и
Тогда уч.н.₂ = -(1/2) * eˣ
И, воспользовавшись теоремой о суперпозиции, частное решение неоднородного уравнения: уч.н. = уч.н.₁ + уч.н.₂ = (x/3)- (2/9) - (1/2) * eˣ
Тогда общее решение неоднородного уравнения:
Задание 2. Это ДУ третьего порядка, однородное. Переходим к характеристическому уравнению, сделав замену Эйлера .
1) > так как 1 км это 1000 м, в этом случае 4,5 км это 4500 м, что больше, чем 4050 м
2) =, так как 1ц это 100 кг, в этом случае 4,5 ц это 450 кг, что больше чем 405 кг
3) =, так как 1 дм это 10 см, в этом случае 4 дм это 40 см
4) >, так как 1 мм² это 0,1 см², в этом случае 4000мм² это 40 см²