Правильная пирамида – это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания. Апофема – это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания. Апофемы всех боковых граней правильная пирамиды равны.
Объём пирамиды через площадь основания S и высоту H определяется по формуле:
V = S•H/3.
По условию основание правильной пирамиды – четырехугольник. Тогда, по определению правильной пирамиды, основание – квадрат со стороной a=12 см. Тогда площадь основания S=a²=(12 см)² =144 см².
Точку пересечения диагоналей основания обозначим О, вершину пирамиды – K (см. рисунок):
ОK - высота пирамиды, KM - апофема боковой грани ΔAKB.
Так как DA=12 см, то ОМ=DA:2=12:2 см = 6 см.
Так как ΔОKM прямоугольный с ∠KОМ=90° и по условию ∠ОKM=30°, то по определению
В скобке правой части сумма арифметической прогрессии с разностью, равной 1 и первым членом 1, ее сумма равна (1+n)*n/2, поскольку скобка справа в квадрате, то (1 + 2 + ... + n)²= ((1+n)*n/2)²= (1+n)²*n²/4, значит, нужно доказать, что 1³ + 2³ + ... + n³ = (1+n)²*n²/4, 1. Берем n=1 /база/, проверяем справедливость равенства.1³=2²*1²/4=1 2. Предполагаем, что для n=к равенство выполняется. т.е. 1³ + 2³ + ... + к³ = (1+к)²*к²/4 3. Докажем, что для n= к+1 равенство выполняется. т.е., что 1³ + 2³ + ... + (к+1)³ = (1+к)²*(2+к)²/4 (1³ + 2³ + ... к³)+ (к+1)³ =(1+к)²*к²/4+ (к+1)³=(к+1)²*(к²+4к+4)/4=(1+к)²*(2+к)²/4
288√3 cм³
Пошаговое объяснение:
Правильная пирамида – это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания. Апофема – это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания. Апофемы всех боковых граней правильная пирамиды равны.
Объём пирамиды через площадь основания S и высоту H определяется по формуле:
V = S•H/3.
По условию основание правильной пирамиды – четырехугольник. Тогда, по определению правильной пирамиды, основание – квадрат со стороной a=12 см. Тогда площадь основания S=a²=(12 см)² =144 см².
Точку пересечения диагоналей основания обозначим О, вершину пирамиды – K (см. рисунок):
ОK - высота пирамиды, KM - апофема боковой грани ΔAKB.
Так как DA=12 см, то ОМ=DA:2=12:2 см = 6 см.
Так как ΔОKM прямоугольный с ∠KОМ=90° и по условию ∠ОKM=30°, то по определению
ctg30°= ОK/ОМ.
Отсюда ОK=ОМ•ctg30°=6 см•√3=6√3 см.
Тогда объем пирамиды равен
V=(144•6√3)/3=288√3 cм³.