ответ:
пошаговое объяснения: предположим, что функциональная зависимость от не задана непосредственно , а через промежуточную величину — . тогда формулы
параметрическое представление функции одной переменной.
пусть функция задана в параметрической форме, то есть в виде:
где функции и определены и непрерывны на некотором интервале изменения параметра . найдем дифференциалы от правых и левых частей каждого из равенств:
далее, разделив второе уравнение на первое, и с учетом того, что , получим выражение для первой производной функции, заданной параметрически:
для нахождения второй производной выполним следующие преобразования:
. найти вторую производную для функции заданной параметрически.
решение. вначале находим первую производную по формуле:
производная функции по переменной равна:
производная по :
тогда
вторая производная равна
ответ.
ответ:Производная y функции – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём и временем при прямолинейном неравномерном движении выражается уравнением , то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени нужно найти производну подставить в неё соответствующее значение
Пример. Точка движется прямолинейно по закону (s выражается в метрах, t – в секундах). Найти скорость движения через 3 секунды после начала движения.
Пошаговое объяснение:
1)2,4
2)61,35
Пошаговое объяснение:
240:100=2,4(в 1%)
(15:100)×409=61,35(в 409%)