3 двухколёсных велосипеда
5 трёхколесных велосипедов
Пошаговое объяснение:
По условию задания известно, что велосипедов всего 8, а колес - 21.
Пусть двухколёсных велосипедов - х штук, тогда трёхколесных велосипедов - (8 - х) штук,
1. 2 * х = 2х - всего колёс у двухколёсных велосипедов
2. 3 * (8 - х) = (24 - 3х) - всего колёс у трёхколесных велосипедов
Составим уравнение:
2х + (24 - 3х) = 21
2х + 24 - 3х = 21
3х - 2х = 21 - 24
-х = -3
х = 3 - двухколёсных велосипеда
8 - 3 = 5 - трёхколесных велосипедов
Проверим:
3 * 2 + 5 * 3 = 6 + 15 = 21 колесо
3 двухколёсных велосипеда
5 трёхколесных велосипедов
Пошаговое объяснение:
По условию задания известно, что велосипедов всего 8, а колес - 21.
Пусть двухколёсных велосипедов - х штук, тогда трёхколесных велосипедов - (8 - х) штук,
1. 2 * х = 2х - всего колёс у двухколёсных велосипедов
2. 3 * (8 - х) = (24 - 3х) - всего колёс у трёхколесных велосипедов
Составим уравнение:
2х + (24 - 3х) = 21
2х + 24 - 3х = 21
3х - 2х = 21 - 24
-х = -3
х = 3 - двухколёсных велосипеда
8 - 3 = 5 - трёхколесных велосипедов
Проверим:
3 * 2 + 5 * 3 = 6 + 15 = 21 колесо
1) 3/5≠6/15 (при определении общего знаменателя = 15)
домножаем обе дроби до 15, чтобы в знаменателе было 15
9/15≠6/15
2) 3/5=9/15 (из примера)
3) 3/5≠10/15
к общему знаменателю 15, в первой дроби домножаем и числитель, и знаменатель до 15, то есть на 3
9/15≠10/15