Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
Задачу можно решить двумя 1) посредством формул, аксиом и теорем планиметрии, изучаемых в стандартной школьной программе; 2) и через привлечение теоремы Менелая. Решим её обоими
[[[ 1 ]]] с п о с о б
Обозначим длины сторон треугольника как:
; ; и ;
Тогда: ;
Обозначим где – некоторое число,
такое, что: ;
Найдя это число мы найдём и пропорцию, в которой делит сторону ;
Проведём прямую тогда по трём углам:
а значит: и ;
и ;
[1] и ;
Поскольку то:
;
;
По трём углам: а значит:
и ;
Поскольку и по [1] то:
;
;
По теореме Фалеса, об отсечении параллельными прямыми внутри угла пропорциональных отрезков, получается, что:
;
Тогда получаем уравнение:
;
;
;
;
;
;
Значит и откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
;
[[[ 2 ]]] с п о с о б
Применим теорему Менелая
в треугольнике с секущей :
;
;
;
;
;
;
Отсюда: ;
;
Значит откуда ясно, что отношение, в котором точка делит сторону считая от точки будет:
AB=BC, следовательно ABC равнобедренный
AB=BC, AD=EC
Угол A=углу C, так как углы при основании равны
Следовательно BAD=BEC
Значит BD=BE
Следовательно BDE равнобедренный