М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мухамед5Ли
Мухамед5Ли
16.01.2023 06:04 •  Математика

EBOB (9;16) + EKOK (6;14) = ?

👇
Ответ:

3/112*(21+16EK2)

4,4(17 оценок)
Открыть все ответы
Ответ:
валера336
валера336
16.01.2023
Периметр прямоугольного треугольника можно найти, зная значения его сторон. Для решения данной задачи, нам необходимо найти значения катетов и гипотенузы треугольника.

Пусть а - катет, b - катет, c - гипотенуза прямоугольного треугольника. Согласно условию задачи, сумма катета и гипотенузы равна 21, то есть a + c = 21.

Так как треугольник является прямоугольным, то можно воспользоваться теоремой Пифагора, которая гласит: c^2 = a^2 + b^2.

Также, известно, что площадь прямоугольного треугольника можно вычислить по формуле: S = (a*b)/2.

На данном этапе, у нас есть два уравнения: a + c = 21 и c^2 = a^2 + b^2. Решим первое уравнение относительно a: a = 21 - c.

Подставим это значение во второе уравнение: c^2 = (21 - c)^2 + b^2.

Раскроем скобки: c^2 = 441 - 42c + c^2 + b^2.

Упростим уравнение: 0 = 441 - 42c + b^2.

Поскольку нам нужно найти периметр прямоугольного треугольника с наибольшей площадью, посмотрим, какую формулу можно составить для периметра.

Периметр треугольника равен сумме длин всех его сторон. В данном случае периметр будет равен a + b + c.

Так как a = 21 - c, периметр можно записать так: P = (21 - c) + b + c.

Упростим формулу: P = 21 + b.

Таким образом, периметр прямоугольного треугольника равен 21 + b.

Если мы хотим найти наибольшую площадь прямоугольного треугольника при условии, что сумма катета и гипотенузы равна 21, нам нужно максимизировать периметр, так как площадь прямоугольного треугольника прямо пропорциональна его периметру.

Так как b - это некая константа, которая не зависит от c, чтобы максимизировать периметр, нам нужно выбрать наибольшее возможное значение c.

Так как c - это гипотенуза и она должна быть больше катетов треугольника, сумма которых равна 21, можем сделать вывод, что c должна быть наибольшей из всех сторон треугольника.

Таким образом, можно сказать, что наибольшая площадь прямоугольного треугольника при условии, что сумма катета и гипотенузы равна 21, достигается при максимальной гипотенузе.

Ответ: Чтобы найти периметр прямоугольного треугольника наибольшей площади при условии, что сумма катета и гипотенузы равна 21, достаточно найти максимальное значение гипотенузы, так как периметр прямоугольного треугольника будет равен 21 + b, где b - это значение катета, которое не зависит от значения гипотенузы.
4,5(81 оценок)
Ответ:
lera111222
lera111222
16.01.2023
Чтобы решить эту задачу, нам понадобятся два физических понятия: закон Гука и формула для потенциальной энергии пружины.

1. Закон Гука утверждает, что сила, действующая на пружину, пропорциональна ее деформации:
F = k * x,
где F - сила, k - коэффициент жесткости пружины (в данном случае 200 Н/м), x - деформация пружины (в данном случае 0,3 м).

2. Формула для потенциальной энергии пружины:
U = (1/2) * k * x^2,
где U - потенциальная энергия пружины, k - коэффициент жесткости пружины, x - деформация пружины.

Теперь мы можем приступить к решению задачи:

1. Подставим известные значения в формулу закона Гука и найдем силу, действующую на пружину.
F = 200 Н/м * 0,3 м = 60 Н.

2. Теперь, используя найденную силу, подставим ее в формулу для потенциальной энергии пружины.
U = (1/2) * 200 Н/м * (0,3 м)^2 = (1/2) * 200 Н/м * 0,09 м^2 = 9 Дж.

Ответ: потенциальная энергия пружины равна 9 Дж (джоулям).

Обоснование:
Потенциальная энергия пружины определяется по формуле U = (1/2) * k * x^2, где k - коэффициент жесткости пружины (в данном случае 200 Н/м), x - деформация пружины (в данном случае 0,3 м). Подставив известные значения в эту формулу, мы получаем результат - 9 Дж (джоулям).
4,6(33 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ