М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DuginBorodaIzVaty
DuginBorodaIzVaty
01.03.2020 02:47 •  Математика

Как получить 180 расставив скобки из примера 53-3•9+4•6=

👇
Ответ:
Diamond1111111
Diamond1111111
01.03.2020

Пошаговое объяснение:

53-3•9+4•6=(53-(3•9)+4)•6=(53-27+4)•6=30•6=180

4,8(27 оценок)
Открыть все ответы
Ответ:
lolsotobas
lolsotobas
01.03.2020
Введём обозначение НОД(a; b) = n. Так как a•b = НОД(a; b)•НОК(a; b), то

НОК(a; b) = a•b/НОД(a; b) = a•b/n.

Рассмотрим числа c = a/n и d = b/n. Тогда c и d взаимно простые числа. Поэтому HOД(c; d) = 1 и НОК(c; d) = c•d.

Далее, так как a = c•n и b = d•n, то

6•(a+b) = 6•(c•n+d•n) = 6•n•(c+d) и НОД(a; b)+НОК(a; b) = n + a•b/n.

Отсюда

6•n•(c+d) = n + a•b/n или

6•(c+d) = 1 + a•b/n² = 1 + (a/n)•(b/n) = 1 + c•d = HOД(c; d) + НОК(c; d), то есть

6•(c+d) = HOД(c; d) + НОК(c; d).

Так как c ≤ a и d ≤ b, то последнее равенство означает, что наименьшее значение a•b следует искать среди чисел, для которых HOД(a; b) = 1.

Найдём целочисленные решения уравнения

6•(c+d) = 1 + c•d.

6•(c+d) = 1 + c•d ⇔ 6•c–c•d = 1–6•d ⇔ c•(6–d) = 1–6•d ⇔

⇔ c = (1–6•d)/(6–d) = (6•d–1)/(d–6) = (6•d–36+35)/(d–6) = 6+35/(d–6).

Значит, 35 делится на d–6, поэтому

d = 7 или 11 или 13 или 41.

Отсюда

c = 41 или 13 или 11 или 7.

Тогда получим следующие пары:

(7; 41), (11; 13), (13; 11), (41; 7).

Так как 7•41 = 287 и 11•13 = 143, то наименьшее произведение равно 143
4,6(51 оценок)
Ответ:
Сацуки001
Сацуки001
01.03.2020

Решение во вложении.

Для решения неравенства грфически вам нужно преобразовать его в функцию f(x)=(...), построить графики данных уравнений, а затем определить, в какой из плоскостей, ограничиваемых графиком, находится нужное множество решений. Для прямой - слева или справа, для параболы - внутри неё или снаружи. Для этого берём любую точку из перечисленных областей и подставляем в неравенство. Если оно верное, зашриховываем выбранную зону. Если нет - противоположную ей область. Для прямой это оказалась область справа от неё, а для параболы - внутри. Затем ищем пересечение штриховок. Это ответ.

Обратите внимание: графическим решением неравенства при строгом знаке (> или <) является ТОЛЬКО определённая вами область, высекаемая графиком. Если знаки нестрогие (<= или >=), то точки самого графика тоже принадлежат множеству решений системы.

Обращаю внимание: я нарисовала новый чертёж с ответом отдельно. Это делать необязательно, достаточно просто хорошо прорисовать область решений на первом чертеже.


Решите 9 класс система неравенств графическим методом x²+y<0 y-2x<=0 ОТВЕТ СДЕЛАТЬ НА САМОМ ГР
Решите 9 класс система неравенств графическим методом x²+y<0 y-2x<=0 ОТВЕТ СДЕЛАТЬ НА САМОМ ГР
4,6(98 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ