М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dipper17
Dipper17
07.02.2021 17:18 •  Математика

решить

Log2 24 - 1/2 Log2 72/log2 18- 1/3 log2 72


решить Log2 24 - 1/2 Log2 72/log2 18- 1/3 log2 72

👇
Ответ:
anishenkovayana
anishenkovayana
07.02.2021
Для решения данного выражения, мы будем использовать некоторые свойства логарифмов.

Данное выражение содержит несколько логарифмов и дробей, поэтому мы сначала должны упростить его. Для начала заметим, что у нас есть несколько логарифмов с одинаковым основанием 2.

1. Используем свойство логарифма log a - log b = log (a/b):
Log2 24 - 1/2 Log2 72 = Log2 (24/72^(1/2))

2. Упростим дробь 24/72^(1/2):
24/72^(1/2) = 24/(72^(1/2))
= 24/√72

3. Заметим, что в знаменателе у нас также присутствует логарифм:
Log2 18 - 1/3 Log2 72 = Log2 (18/72^(1/3))

4. Упростим дробь 18/72^(1/3):
18/72^(1/3) = 18/(72^(1/3))
= 18/∛72

5. Теперь мы можем объединить две получившиеся дроби:
(24/√72)/(18/∛72)

6. Чтобы разделить две дроби, мы можем умножить первую на обратную второй дробь:
(24/√72)*(∛72/18)

7. Можем упростить числитель и знаменатель выражения:
24*∛72/(√72*18)

8. Мы видим, что 72 можно представить в виде 2^3 * 3^2:
24*∛(2^3 * 3^2)/(√(2^3 * 3^2)*18)
24*(∛(2^3) * ∛(3^2))/((√(2^3) * √(3^2))*18)

9. Упрощаем выражения под корнем:
24*(2 * √3)/((2 * 3)*18)

10. Далее, проводим несколько исключений:
24*2√3/(2*3*18)
4√3/36
√3/9

Таким образом, получаем ответ: √3/9.
4,5(11 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ