Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49
1 сторона — х см
вторая сторона — (х+8) см
третья сторона — (х+4) см
всего — 54см
х+х+8+х+4= 54
3х+12= 54
3х= 54-12
3х= 42
х= 42:3
х=14см-1сторона.х+8=14+8=22см-2сторона.х+4=14+4=18см-3сторона.