М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
llRosell
llRosell
03.07.2020 09:48 •  Математика

Купили 13 шариков и 18 свечей по одинаковой цене. За шарики заплатили 182 рублей(-я). Сколько заплатили за все свечи?

👇
Ответ:
Сорим
Сорим
03.07.2020

Найдем сколько стоит один шарик.

Для этого надо стоимость всех шариков разделить на число шариков:

182:13=14рублей (цена одного шарика)

По условию нам дано что стоимость одного шарика равна стоимости одной свечи.

Значит стоимость одной свечи составляет 14 рублей

Дальше найдем сколько заплатили за все свечи.

Для этого надо стоимость одной свечи умножить на количество всех свечей:

18*14=252 рубля

Правильный ответ: За все свечи заплатили 252 рубля.

4,4(91 оценок)
Открыть все ответы
Ответ:
20Sascha07
20Sascha07
03.07.2020
Периметр  - сумма длин всех сторон.
У равнобедренного треугольника: две  равные стороны  и  основание.
Пусть а - сторона треугольника , b - основание.
Р= a+a+b =30 см
Следовательно может быть :
1) Основание больше на 3 см, чем сторона.
Р= a+a+(a+3)= 30 см
3а+3=30
3а=30-3
3а=27
а=9 см - сторона треугольника
9+3=12 см - основание треугольника
Р= 9+9+12 =30 см
2) Сторона больше на 3 см, чем основание.
Р= (b+3)+(b+3) +b =30
3b+6= 30
3b=30-6
3b=24
b=8 см -  основание
8+3= 11 см - сторона
Р= 11+11+8=30 см.
ответ: стороны равнобедренного треугольника могут быть:
1) 9 см, 9 см, 12 см
2) 11 см , 11 см, 8 см
4,8(20 оценок)
Ответ:
Sachak95
Sachak95
03.07.2020

График прямой пропорциональности 11. Область определения этой функции – множество всех чисел.

2. Найдем некоторые соответственные значения переменных х и у.

Если х = -4, то у = -2.

Если х = -3, то у = -1,5.

Если х = -2, то у = -1.

Если х = -1, то у = -0,5.

Если х = 0, то у = 0.

Если х = 1, то у = 0,5.

Если х = 2, то у = 1.

Если х = 3, то у = 1,5.

Если х = 4, то у = 2.

3. Отметим в координатной плоскости точки, координаты которых мы определили в пункте 2. Отметим, что построенные точки принадлежат некоторой прямой.

4. Определим, принадлежат ли этой прямой другие точки графика функции. Для этого найдем координаты еще нескольких точек графика.

Если х = -3,5, то у = -1,75.

Если х = -2,5, то у = -1,25.

Если х = -1,5, то у = -0,75.

Если х = -0,5, то у = -0,25.

Если х = 0,5, то у = 0,25.

Если х = 1,5, то у = 0,75.

Если х = 2,5, то у = 1,25.

Если х = 3,5, то у = 1,75.

Построив новые точки графика функции, замечаем, что они принадлежат той же прямой.

Если мы будем уменьшать шаг наших значений (брать, например, значения х через 0,1; через 0,01 и т. д.), мы будем получать другие точки графика, принадлежащие той же прямой и расположенные все более близко друг от драга. Множество всех точек графика данной функции есть прямая линия, проходящая через начало координат.

Т. о., график функции, заданной формулой у = kх, где k ≠ 0, есть прямая, проходящая через начало координат.

Если область определения функции, заданной формулой у = kх, где k ≠ 0, состоит не из всех чисел, то ее графиком служит подмножество точек прямой (например, луч, отрезок, отдельные точки).

Для построения прямой достаточно знать положение двух ее точек. Поэтому график прямой пропорциональности, заданной на множестве всех чисел, можно строить по любым двум его точкам (в качестве одной из них удобно брать начало координат).

Пусть, например, требуется построить график функции, заданной формулой у = -1,5х. Выберем какое-либо значение х, не равное 0, и вычислим соответствующее значение у.

Если х = 2, то у = -3.

Отметим на координатной плоскости точку с координатами (2; -3). Через эту точку и начало координат проведем прямую. Эта прямая – искомый график.

Основываясь на данном примере, можно доказать, что График прямой пропорциональности 2всякая прямая, проходящая через начало координат и не совпадающая с осями, является графиком прямой пропорциональности.

Доказательство.

Пусть дана некоторая прямая, проходящая через начало координат и не совпадающая с осями. Возьмем на ней точку с абсциссой 1. Обозначим ординату этой точки через k. Очевидно, что k ≠ 0. Докажем, что данная прямая является графиком прямой пропорциональности с коэффициентом k.

Действительно, из формулы у = kх следует, что если х = 0, то у = 0, если х = 1, то у = k, т. е. график функции, заданной формулой у = kх, где k ≠ 0, есть прямая, проходящая через точки (0; 0) и (1; k).

Т. к. через две точки можно провести только одну прямую, то данная прямая совпадает с графиком функции, заданной формулой у = kх,

Пошаговое объяснение:

4,5(84 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ