2 ВАРИАНТ 1. Дано множество чисел A: A = {4,2; - 6; 0; 9,3; 0,4;; 3}. Выделите из множества А подмножества: В натуральных чисел, C - целых чисел и D - рациональных чисел. Постройте диаграмму Эйлера Венна для множеств B, C и Dи отметьте на ней элементы множества А.
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
Если рядом сидят два химика, то правый скажет правду: НЕТ. Если рядом сидят два алхимика, то правый соврет: НЕТ. Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика. Допустим, у нас n химиков. Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ. Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество. Пусть все химики сидят через одного с алхимиками. ХАА...АХАХА...ХА Разобьем их на пары (ХА)А...А(ХА)(ХА)...(ХА) Здесь n А подряд и n пар ХА. Всего n + n А и n Х. n + n + n = 160 3n = 160 Но 160 не делится на 3, поэтому такого не может быть. Значит, есть хотя бы одна пара Х подряд. (ХА)(ХХ)А...А(ХА)(ХА)...(ХА) Здесь 2 химика, еще (n-2) пары ХА и ряд из n А. Химиков по-прежнему n, а алхимиков n + (n-2) n + n - 2 + n = 160 3n - 2 = 160. 3n = 162 n = 54
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел