1) Обозначим количество городов в 1-ой республике за n, а во 2-ой - за m.
2) По условию каждый город в 1-ой респ соединен с каждым городом 2-ой респ и плюс еще со столичным городом, т. е. всего дорог:
1 город с m городами и со столицей m+1 дорог
n городов с m городами и со столицей n*(m+1) дорог
3) Также и с городами во 2-ой респ, но теперь будем считать только те дороги, которые связывают их со столицей, так как мы уже посчитали дороги, связывающие с городами в 1-ой респ. Их будет m.
4) Значит в стране всего n*(m+1)+m=29 дорог и из этого нам надо найти наименьшее значение суммы n+m+1 (включая столицу):
n*(m+1)+m=29
nm+n+m=29
n+m+1=30-nm, Сюда можно подобрать числа n=4 и m=5, так как их значения не могут быть дробными или отрицательными(n,m∈N, след-но n+m+1>0, а значит и 30-nm>0, откуда nm<30 и чтобы равенство n+m+1=30-nm было верным подходят только n=4 и m=5, так как n,m∈N и nm<30)
Следовательно наименьшее количество городов может равнятся n+m+1=4+5+1=10
Задачка на производительность. Пусть вся работа (покраска забора) равна 1. Паша может покрасить весь забор за П часов.Тогда производительность Паши равна 1/П. Таким же образом производительность Игоря равна 1/И, а производительность Володи равна 1/В. Производительность Игоря и Паши равна (1/И+1/П)=1/20. (1) Производительность Паши и Володи равна (1/П+1/В)=1/24.(2) Производительность Володи и Игоря равна (1/В+1/И)=1/30.(3) Имеем систему трех уравнений. Вычтем из первого второе: 1/И-1/В=1/20-1/24=1/120. Теперь сложим получившийся результат с (3): (1/И-1/В=1/120) +(1/В+1/И=1/30) . В результате имеем: 2/И=5/120=1/24. Значит 1/И=1/48. Это производительность Игоря. Тогда из (3) получим производительность Володи: 1/В=1/48-1/120=1/80. Производительность Паши из (1) или (2) равна 1/20-1/48=7/240 или 1/24-1/80=7/240 (естественно, одно и то же). Зная производительность троих, находим их производительность при совместной работе: 1/48+1/80+7/240=15/240=1/16. Значит всю работу втроем они выполнят за 16 часов.
10 городов
Пошаговое объяснение:
1) Обозначим количество городов в 1-ой республике за n, а во 2-ой - за m.
2) По условию каждый город в 1-ой респ соединен с каждым городом 2-ой респ и плюс еще со столичным городом, т. е. всего дорог:
1 город с m городами и со столицей m+1 дорог
n городов с m городами и со столицей n*(m+1) дорог
3) Также и с городами во 2-ой респ, но теперь будем считать только те дороги, которые связывают их со столицей, так как мы уже посчитали дороги, связывающие с городами в 1-ой респ. Их будет m.
4) Значит в стране всего n*(m+1)+m=29 дорог и из этого нам надо найти наименьшее значение суммы n+m+1 (включая столицу):
n*(m+1)+m=29
nm+n+m=29
n+m+1=30-nm, Сюда можно подобрать числа n=4 и m=5, так как их значения не могут быть дробными или отрицательными(n,m∈N, след-но n+m+1>0, а значит и 30-nm>0, откуда nm<30 и чтобы равенство n+m+1=30-nm было верным подходят только n=4 и m=5, так как n,m∈N и nm<30)
Следовательно наименьшее количество городов может равнятся n+m+1=4+5+1=10
ответ: 10 городов