10
1. 1) Дробь называется неправильной, если числитель больше или равен знаменателю, у ВАС, когда a ≤ 20, должно выполняться неравенство 20/а <2; 10/а<1;⇒a > 10, т.е. а∈(10;20], найдем теперь множество натуральных, попадающих в данный промежуток.
a = {11;12;13;14;15;16;17;18;19;20}
2) когда a ≤ 4, должно выполняться неравенство 4/а >а; решим неравенство методом интервалов.4/а-а>0; (4-а²)/а>0, это неравенство равносильно такому а(2-а)(2+а) >0
-202
+ - + -
Решением этого неравенства служат а∈(-∞;-2)∪(0;2), учитав, что а- натуральное, a ≤ 4, получаем, что таким а является только одно число а=1.
2. Раздробим единицу как 40/40, 1 - 13/40 = 40/40 - 13/40 = 27/40
3. n < 123/30 = 4 3/30 =>n < 123/30 = 4.1; n = 4 - наибольшее натуральное n, удовлетворяющее данному неравенству.
4. 9 5/9-(х+3 7/9)=5 4/9
9 5/9 - 5 4/9=x + 3 7/9
x + 3 7/9 = 4 1/9
x = 4 1/9 - 3 7/9
x = 37/9 - 34/9
x = 3/9
x = 1/3
ответ: 2; 2; 3;4.
Пошаговое объяснение:
Если у нас 3 монеты, достаточно двух взвешиваний. Кладём на каждую чашку весов по одной монете. Если весы не в равновесии, значит, та монета, которая осталась, — настоящая. Кладём её на весы с любой из остальных и сразу определяем, какая из них фальшивая. Если же весы в равновесии, значит, фальшивая монета та, которая осталась, и вторым взвешиванием можно даже определить, легче она или тяжелее, чем настоящие. Если у нас 4 монеты, опять достаточно двух взвешиваний. Разделим наши монеты на две кучки по 2 монеты и положим одну из кучек на весы — по монете на каждую чашку. Если весы в равновесии, то обе монеты на них настоящие. Если весы не в равновесии, то обе монеты на столе настоящие. Итак, теперь мы знаем, в какой кучке лежит фальшивая монета. Положим на одну чашку весов монету из кучки, где обе настоящие, на вторую — монету из кучки, где фальшивая. Если при этом весы будут в равновесии, значит, фальшивая монета осталась на столе, а если не в равновесии, значит, мы положили её на весы (в этом случае мы даже узнаем, легче она или тяжелее). Если у нас монет 9, потребуется три взвешивания. Делим монеты на три кучки по 3 монеты и кладём две из этих троек на две чашки весов. Если весы в равновесии — в оставшейся кучке находится фальшивая монета, и за два взвешивания (как это показано в случае 1 настоящей задачи) мы определим фальшивую монету. Итак, всего нам понадобится три взвешивания. Пусть теперь весы не будут в равновесии, значит, одна из кучек на весах — с фальшивой монетой, а в той кучке, которая осталась, только настоящие. Кладём на весы эту кучку и любую из первых двух. Так мы найдём не просто кучку с фальшивой монетой, но и сразу определим, легче эта монета или тяжелее настоящих. Мы проделали два взвешивания, но зато теперь уже только одним взвешиванием (как показано в случае 1 задачи 49) можем определить фальшивую монету. Итак, всего нам понадобится три взвешивания.
10