Борын-борын заманда булган икән, ди, бер кеше. Бу кеше нең исеме Нарый булган, ди.
Көннәрдән беркөнне Нарый чыгып киткән, ди, юлга. Бара да бара, ди, бу. Бара торгач барып кергән, ди, бу ялтырап торган боз өстенә. Боз өстенә барып керүе булган, аягы таеп, әйләнеп төшүе булган.
— Боз, син нидән болай көчле?
— Көчле булсам,— ди Боз,— мине Кояш эретә алмас иде, — ди.
— Кояш, син нидән көчле? — ди Нарый.
— Көчле булсам, мине Болыт капламас иде.
— Болыт, син нидән көчле?
— Көчле булсам, мине Яңгыр тишеп чыкмас иде.
— Яңгыр, син нидән көчле?
— Көчле булсам,— ди Яңгыр,— мине Җир сеңдермәс иде.
— Җир, син нидән көчле?
— Көчле булсам, мине Үлән тишеп чыкмас иде.
— Үлән, син нидән көчле?
— Көчле булсам, мине Сыер ашамас иде.
— Сыер, син нидән көчле?
— Көчле булсам, мине Пычак кисмәс иде. Хәзер Пычактан сорый инде Нарый:
— Пычак, син нидән көчле?
— Көчле булсам, мине Ут эретмәс иде.
— Ут, син нидән көчле?
— Көчле булсам, мине Су сүндермәс иде.
— Су, син нидән көчле?
— Көчле булсам, мине кеше җиңмәс иде, ә ул мине җиңә, тегермәннәр әйләндерергә җигә! — ди Су.
Шуннан соң Нарый, кешедән дә көчле нәрсә юк икән дип, үз юлына китә, шуның белән әкият тә бетә.
Пошаговое объяснение:
а) Первый Пусть из некоторого города A нельзя попасть в некоторый город B по железной дороге. Рассмотрим множество M всех городов, в которые можно попасть из города A по железной дороге. Множество городов, не входящих в M, обозначим N. Множество N непусто, поскольку в нём содержится город B. Ясно, что из городов множества M нельзя попасть в города множества N по железной дороге.
Докажем, что из каждого города в любой другой можно попасть авиарейсами.
Если один из городов принадлежит M, а другой – множеству N, то между ними есть прямая авиалиния.
Пусть два города принадлежат M. Тогда из первого города можно попасть авиарейсом в некоторый город множества N, а оттуда (также самолётом) – во второй город.
Аналогично рассматривается случай, когда оба города принадлежат N.
Второй См. г).
б) См. в).
в) Пусть для города X это не так: есть город A, в который из X нельзя долететь за два "хода", и город B, в который из X нельзя доехать на поезде за два "хода" (значит, X и B связаны авиалинией). Пусть A и B связаны авиалинией. Тогда в X из A в можно добраться по воздуху с пересадкой в B. Противоречие.
Аналогично к противоречию приводит и предположение о том, что A и B связаны железной дорогой.
г) Пусть из A в нельзя долететь за три "хода", а из C в D нельзя доехать на поезде за три "хода". Тогда A и B связаны железной дорогой, а C и D – авиалинией.
Пусть A и C связаны железной дорогой. Тогда B и D связаны авиалинией (иначе был бы ж/д маршрут CABD), а A и D – железной дорогой (иначе есть авиамаршрут BDA). Противоречие: есть ж/д маршрут CAD.
Аналогично к противоречию приводит и предположение о том, что A и C связаны авиалинией.
845 км
Пошаговое объяснение:
95*3=285 км
112*5=560 км
285+560=845 км