Так! Решение большое, очень большое, давай я основные моменты напишу. Во-первых, нам надо привести все это к нормальному виду уравнений, . Выражаем в обоих случаях "y" и приравниваем уравнения. Теперь у нас две переменные "а" и "у".. 1 - ое уравнение: y = a^2 - a*x 2-ое: y= (-4a - (a-6)*x)/ a-4 Приравняем их. a^2 - a*x = (-4a - (a-6)*x)/ a-4 а) раскрываем скобки, и переносим все в одну сторону (лучше умножить, как пропорцию), тогда у нас появятся квадраты при "х", т.е. теперь мы имеем квадратное уравнение. Квадратное уравнение имеет один корень, если дискриминант = 0. Не боясь, находим его, не забывая, что теперь коэффициенты не только числа, но и аргумент "а" и приравниваем его к о. Находим "а". Пункт "А" решен. б) Мы нашли значение а, при котором система имеет одно решение. Система вообще может иметь либо одно решение, либо ни одного, либо более одного. Т.е. "более одного решения" - это все решения кроме "одного решения" и "ни одного решения", поэтому мы можем решить пункт "А", "В" и исключить и из бесконечности. ответ выглядит вот так: а принадлежит промежутку от плюс бесконечности до минус бесконечности, но без промежутков, которые мы нашли в пунктах "А" и "В". В) В самом начале, когда мы выражали "у" во втором уравнении,мы получили дробь, где "а-4" стоит в знаменателе, значит при a = 4 Система не имеет решений. Но вспомним, что система не будет иметь решений и в том случае, если дискриминант будет меньше 0. Вооот такой вот геморрой) Надеюсь
Расстояние от хорды до параллельной ей касательной есть перпендикуляр. Надо доказать, что радиус, проведенный к точке касания перпендикулярен хорде. доказывается по свойствам углов, образованных двумя параллельными и секущей к ним. Если мы соединим концы хорды с центром окружности , то получим два прямоугольных треугольника, у которых общая сторона - радиус, пересекающий хорду. Эти треугольники равны по равенству катета и гипотенузы. Следовательно точка пересечения радиуса и хорды делит хорду пополам. Далее по теореме Пифагора находим отрезок радиуса, соединяющего центр окружности и точку пересечения радиуса с хордой и вычитаем его из радиуса. Находим искомое расстояние.
Во-первых, нам надо привести все это к нормальному виду уравнений, . Выражаем в обоих случаях "y" и приравниваем уравнения. Теперь у нас две переменные "а" и "у"..
1 - ое уравнение: y = a^2 - a*x
2-ое: y= (-4a - (a-6)*x)/ a-4
Приравняем их.
a^2 - a*x = (-4a - (a-6)*x)/ a-4
а) раскрываем скобки, и переносим все в одну сторону (лучше умножить, как пропорцию), тогда у нас появятся квадраты при "х", т.е. теперь мы имеем квадратное уравнение.
Квадратное уравнение имеет один корень, если дискриминант = 0.
Не боясь, находим его, не забывая, что теперь коэффициенты не только числа, но и аргумент "а" и приравниваем его к о. Находим "а".
Пункт "А" решен.
б) Мы нашли значение а, при котором система имеет одно решение. Система вообще может иметь либо одно решение, либо ни одного, либо более одного. Т.е. "более одного решения" - это все решения кроме "одного решения" и "ни одного решения", поэтому мы можем решить пункт "А", "В" и исключить и из бесконечности.
ответ выглядит вот так: а принадлежит промежутку от плюс бесконечности до минус бесконечности, но без промежутков, которые мы нашли в пунктах "А" и "В".
В) В самом начале, когда мы выражали "у" во втором уравнении,мы получили дробь, где "а-4" стоит в знаменателе, значит при a = 4 Система не имеет решений.
Но вспомним, что система не будет иметь решений и в том случае, если дискриминант будет меньше 0.
Вооот такой вот геморрой) Надеюсь